

Using Fictitious Play to Find Pseudo-Optimal
Solutions for Full-Scale Poker

William Dudziak

Department of Computer Science, University of Akron
Akron, Ohio 44325-4003

Abstract

A pseudo-optimal solution to the poker variant,

Two-Player Limit Texas Hold’em was developed and
tested against existing world-class poker algorithms.
Techniques used in creating the pseudo-optimal
solution were able to simplify the problem from
complexity from O(10^18) to O(10^7). To achieve this
reduction, bucketing/grouping techniques were
employed, as were methods replacing the chance
nodes in the game tree; reducing it from a tree with
millions of billions of terminal nodes, to a game tree
with only a few thousand.

When played in competition against several

world-class algorithms, our algorithm displayed
strong results, gaining and maintaining leads against
each of the opponents it faced. Using proper
abstraction techniques it is shown that we are able to
succeed in approaching Nash Equilibria in complex
game theoretical problems such as full-scale poker.

Keywords

Fictitious play, Poker, Nash equilibrium, Game theory,
Game tree reduction.

1 Introduction

Poker is a competitive card game formed of
imperfect decisions punctuated by moments of chance.
The variation of poker described in this article is
known as Texas Hold’em. The game begins when each
player is dealt 2 cards face-down. Following the deal,
a round of betting proceeds where players have 3

options: call the current bet, and continue the game;
bet, and raise the stakes of the game; or fold and
remove themselves from the game at the benefit of not
having to pay anything further. This first round of
betting is referred to as Preflop. After the preflop
betting round, three cards are placed face up on the
board; all cards placed on the board are shared by all
the players. A round of betting continues, referred to
as The Flop. Following the flop, a fourth card is
placed (The Turn), followed by a round of betting, and
lastly a fifth card is place on the table (The River)
followed by a final round of betting. If more than one
opponent is left at this stage in the game, a showdown
occurs where the remaining players display their
cards, and must form the most valuable 5 card hand
using their 2 hidden cards, and the 5 community cards.
The player with the most valuable hand wins all the
chips placed in the pot throughout the game.

To Summarize:

1. Deal (2 cards each)
2. Betting (preflop domain)
3. Deal (3 cards shared between all players)
4. Betting (flop domain)
5. Deal (1 card shared between all players)
6. Betting (turn domain)
7. Deal (1 card shared between all players)
8. Betting (river domain)

Poker in general is of great interest to computer

research and artificial intelligence since, in a very
well-defined form, it exhibits many of the properties
of real world situations including forced action under
uncertainty of the current-world state, and being
forced to act when the future state is uncertain. The
methods for solving poker can provide insight into
developing applicable strategies for the development
of more versatile artificial intelligence algorithms.

The attempt to achieve near-optimal solutions to
the game of poker is not a new concept; however the
approach presented in this paper is unique, and
contains several qualities which are distinct from
previously developed pseudo-optimal solutions.
Notably, in the domain of Texas Hold’em, an
algorithm was developed in 2003 by a research group
at the University of Alberta named PsOpti. PsOpti has
been shown to have extraordinarily strong
performance versus human opponents and has bested
all previously developed algorithms [2]. In section 6,
results of competition between our algorithm, which
we refer to as Adam and PsOpti are presented.

2. Game Theory

2.1 Definition of Game-Theoretic
Optimality

Game theory is an economic study of the strategic

interactions between intelligent agents. Through
analysis of this interaction, proper behaviors can be
derived to yield behavioral strategies that minimize an
agent’s losses. Such game-theoretic solutions are
referred to as optimal, or as a Nash Equilibrium of the
given game.

A game-theoretic optimal solution is a fixed

behavioral strategy containing a mix of random
probabilities at decision nodes within the game tree.
Following the stated strategy in an evenly balanced
game will yield at worst a break-even situation over
long-term play. However, if the opponent is playing
sub-optimally, and continues to make strategically
dominated errors, an optimal player will be able to
exploit these. If an opponent’s errors persist in the
long-term, such a player will have no chance of
winning against an optimal strategy.

The key disadvantage of playing an optimal

strategy is that the optimal play only accrues an
advantage over opponents only when opponents make
dominated errors. For example: if there are three
choices facing a human player at a given decision
node, and the optimal strategy states to play choice A
20% of the time, choice B 0% of the time, and choice
C 80% of the time; if the human player were to choose
action B, then that would be a dominated mistake, and
the optimal opponent would gain an advantage.
However, if the opponent were to choose A or C at
any frequency (0%-100% of the time), this is a
strategic error known as a non-dominated error;
though this strategy may be suboptimal, an optimal

player will be unable to gain any advantage from this
behavior.

An Example to Illustrate the Properties of Nash
Equilibria and Dominated/Non-Dominated Error:

The game Rock-Paper-Scissors (paper beats rock,

rock beats scissors, scissors beats paper), has a
remarkably simple optimal solution: play rock with
1/3 probability, paper with 1/3 probability, and
scissors with 1/3 probability.

Using Rock-Paper-Scissors, it should be apparent

that a strategy of ‘always play rock’, is not a preferred
solution. However, if playing against an optimal
opponent, the strategy will not incur any penalties
since the player will continue to win 1/3 of the time,
lose 1/3 and tie 1/3. This is an illustration of non-
dominated error. The player is not playing by the
rules of the optimal solution, however since the
optimal solution involves non-zero probabilities of
playing rock/paper/scissors, any strategy involving
those elements will not sustain any penalty when
playing against an optimal opponent.

A fourth element can be added to this game to

demonstrate dominated error. We can call the game
Rock-Paper-Scissors-Dynamite (the only change to the
rules is that dynamite beats rock, and is beaten by
paper or scissors). The optimal strategy given these
rules is: play rock with 1/3 probability, paper with 1/3
probability, scissors with 1/3 probability, and
dynamite with 0 probability. If playing against an
optimal opponent and the decision is made to play
dynamite, this incurs a dominated error, and the
projected winnings from the game will decrease as
result.

After this example, it seems that playing

dominated errors should be a rare occurrence in
games, since the decision seems so clear cut.
However, testing has shown that in complicated
games, especially games of imperfect information,
dominated errors occur often enough (even among
pseudo-optimal players), that if played over the long-
term, weaknesses in strategy are evident [2].

2.2 Optimality through Fictitious Play

2.2.1 Definition of Fictitious Play

Fictitious play is a set of learning rules designed

to produce agents capable of approaching optimality,
and was first introduced by G.W. Brown in 1951 [1].
The basic rules of fictitious play are: 1. that each

player analyzes their opponent’s strategy, and devises
a best response. 2. Once a best response is calculated,
it is incorporated into or replaces the current strategy
of the player. 3. The opposing player executes steps 1
& 2 for themselves. 4. The whole process repeats
until a stable solution is achieved. Note that the ability
of fictitious play to solve a game is not guaranteed, for
in some rare cases solution stability can not be
achieved.

2.2.2 Solution to Simple Poker Variants
Using Fictitious Play

Prior to a large attempted solution using fictitious
play, very basic poker games were constructed and
solved, one of which is presented here:

One-Card One-Round Poker (Figure 1):

1. Each player places 1 chip in the pot.
2. Each player is then presented with one card

from a (in this case 169 card) deck.
3. One player is designated to start the betting

(Player 1).
4. Player 1 makes a decision to bet, check, or

fold.
5. Player 2 then makes a decision to bet,

check/call, or fold.
6. The game ends when any player calls the

other’s bet, or when any player folds. The
maximum number of raises is 4.

Figure 1 - Game tree representation of One-Card
One-Round Poker

7. After the betting sequence, the player not to
fold, or the player with the higher card wins
the pot.

This simple poker variant was solved using fictitious
play, the solution of which is presented in Figure 2
with the terminal node connections removed.

Figure 2 - Optimal solution to One-Card One-
Round poker.

3 Abstractions

3.1 Nature of the Problem of Poker

 The game of 2-player Texas Hold’em is a
problem of size O(10^18) [2]. The sheer size of the
problem makes clear the intractability of computing a
perfect solution to the game, however there are several
methods available that allow a reduction from
O(10^18) to size O(10^7). Though the problem has
been reduced by a significant margin, its key
properties can be preserved through appropriate
abstraction, and a pseudo-optimal solution can be
solved for this smaller, more manageable problem.

3.2 Game Tree Abstraction

 The purpose of using abstraction is to reduce the
size of the solution algorithm without modifying in the
underlying nature of the problem. In poker, there are
available several methods of abstraction which do not
detract at all from the solution, two of which are
position isomorphs (for the two cards in the hand, or
the three cards in the flop, position does not matter),
and suit equivalence isomorphs (4s 5h in the hand
preflop is equivalent to having 4c 5d, et al.). Using
the available perfect isomorphs unfortunately does not
reduce the game size to a significant enough degree to
yield the problem solvable given current techniques.

3.2.1 Bucketing/Grouping

Bucketing is an excellent and commonly used
abstraction technique that incurs minimal loss of
information, and yields large reduction in problem
size. By grouping hands of similar value into buckets,
we can abstract entire groups of hands that can be
played similarly into a single quantum. This method
is conceptually very similar to using perfect
isomorphs, for example, in our algorithm all 311
million possible flop states are bucketed into 256
categories; hands such as: “2h 4d, 3c 5s 6s” (hand,
table) and “2d 5c, 4h 6d 3h” would be bucked
together, and treated as having the same state. The
algorithm’s preflop domain contains 169 buckets, and
each of the three following round domains contain 256
buckets. This is a significant improvement from
previous solutions which used at most 6 or 7 buckets
to describe each domain [2].

Figure 4 - Progression from Domain A to
Domain B through a conversion matrix.

Figure 3 - Progression from Domain A to Domain
B through chance Node (magnitude 4). In a real
game tree, the chance node magnitude would be
between 45 and 120,000.

3.2.2 Chance Node Elimination

For fictitious play to be a viable solution method,
a well-defined, tractable game tree must be
established. In the pure solution (not abstracted), the
tree can be represented as 4 tree domains (preflop,
flop, turn, and river), each of which having 10 nodes
(with exception of preflop because of special game
rules, having 8) (refer to Figure 1 for an example of a
single-domain tree). As a leaf node from one domain
proceeds to the next domain (through a check/call
action in anything but the root of the domain),
depending on the domain change, thousands of
subtrees must be formed from the movement (Figure
3). This structure becomes quickly unusable, for as
the tree continues to expand through chance nodes
between domains, its size increases at a rapid
exponential rate.

In the solution presented, the problem regarding
the exponential blow-up of the game tree size is
addressed by eliminating chance nodes between
domains completely. Though removal does introduce
error, the essence of the chance nodes are preserved
and replaced by conversion matrices which provide
similar function while reducing the exponential blow-
up of the game tree (Figure 4). Using this strategy,
each leaf node has exactly one sub domain tree
associated with it. This produces a considerably
lighter game tree to solve, and with the chance nodes
removed from the solution, the problem is reduced to
solving a tree with 6468 decision nodes instead of
quite literally millions of billions of nodes.

3.2.3 Transition Probabilities

Since the chance nodes have been completely
removed from the game tree, and a bucketing
approach is being used to represent states within each
domain, a method to convert buckets from a Domain A
to equivalent buckets in a Domain B requires a series
of transition probabilities. This process can be
accomplished with a conversion matrix, where each
column represents a bucket within Domain A, and
each row represents the corresponding probability that
the Domain A bucket will translate into the Domain B
bucket represented by the column number (Figure 5).
These conversion matrices are expensive to compute,
as each must be representative of the thousands of
chance nodes which they replace.

3.2.3.1 Masking Transition

The first method explored, and one which proved
to work fairly well, was to create generic
transformation probabilities, convert the buckets from
domain to domain, and then mask the converted
bucket probabilities based on specific information
about the game-state of Domain B (Figure 6). This

method produces a generic conversion that while
being imperfect, shares the same statistical properties
as a tailor-made conversion distribution based on the
specific game state. This method also has the benefit
of being faster to calculate on the fly, requires less
before-hand calculation, and requires less memory
overhead than the perfect transition discussed next.

3.2.3.2 Perfect Transition

By calculating before-hand for every possible
game-state its corresponding bucket, it is possible to
use this information on the fly to create a tailor-made
conversion matrix based on the game-state of Domain
A, and the game-state of Domain B. This approach
offers a great advantage in that it allows ‘perfect’
transitions between domains rather than a convincing
generic transition offered by a masking method. The
first of three issues invited by using this method is that
since there are so many possible game states, the
matrix must be created on the fly; reserving the
computational resources required to create these
matrices slows down calculation considerably. The
second issue is that the buckets for each game-state
must be known in advance (a task which depending on
the problem size can easily be intractable). The last
issue is that (in the case of the current implementation)
the buckets for these hundreds of millions of states,
once calculated, must reside in memory; using the data
off the hard drive at this time seems to be an
unattractive option for speed concerns.

Figure 5 - Progression from Domain 1 with
possible states {A,B,C,D} to Domain 2 with
possible states {a,b,c,d} using a conversion
matrix
Assumptions:
P(A)+P(B)+P(C)+P(D) = 1
P(a|x)+P(b|x)+P(c|x)+P(d|x) = 1

4 Training an Optimal Player

Our algorithm which we refer to as Adam, was
trained using a technique based on Fictitious Play
(section 2.2), described earlier; the premise behind the
training is that if two players who know everything
about each other’s playing style adapt their own styles
long enough, their playing decisions will approach
optimality. This optimality is achieved in Adam by
subjecting the decision tree to randomly generated
situations, analyzing how to play ‘correctly’ for the
specific situation (based on how we know we will play
and our opponent will play), and adapting the generic
solution slightly toward the correct action just
discovered. To solve two-player Texas Hold’em,
hundreds of thousands of iterations of this basic
procedure need to be applied to every node of the
decision tree before the solution suitably approaches
optimal play.

5 Playing Adam

Game theoretic solutions are distinguished in that
the strategies produced are randomized mixed
strategies; however though Adam is pseudo-optimal,
the strategies produced are not entirely mixed. The
decision tree represents a trimmed version of the
optimal decision tree (one which would include all
chance nodes between domains). Because of the
abstraction chosen, the flop, turn, and river domains
do not have a direct relationship with their optimal
cousin; however the preflop domain remains
unchanged even after the abstraction. This
dissimilarity between domains translates into different
approaches toward using the game tree in actual game
play. In evaluating preflop states, Adam is able to rely
on its preflop solution to provide approximate game-
theoretic optimal strategies, and in turn, Adam uses the
mixed strategies developed for preflop within its game
play. Post-flop, Adam can not rely on the generic
strategies developed through training to be suited for
current board conditions, and must use them solely for
reference to estimate future actions. Adam, given
current information then queries the sub tree from the
current decision node, and chooses the action which is
assessed to have the highest value.

6 Experimental Results

 Adam was played in competition against two
algorithms created by a team of researchers from the
University of Alberta: PsOpti, a pseudo-optimal
solution, and Vexbot, a maximal algorithm. This
research group has released a software package called
Poker Academy. A pseudo-optimal solution for Two-
Player Texas Hold’em was generated by our algorithm
was placed in competition with both PsOpti and
Vexbot via interfaces provided in their software.
Figures 6-8 illustrate the results of the competition.

Figure 6. 20,000 hand performance against PsOpti.
(winnings on the y-axis, hands played along x-axis)

Figure 7. 20,000 hand performance against PsOpti.
(winnings on the y-axis, hands played along x-axis)

Figure 8. 50,000 hand Performance against Vexbot.
(winnings on the y-axis, hands played along x-axis)

 Both Figure 6 and Figure 7 represent separate
competitions against another pseudo-optimal
opponent. That our solution is able to consistently win
against this player suggests that the solution generated
by our algorithm is significantly closer to true
optimality.

 Figure 8 represents a competition between our
derived solution, and a maximal algorithm which is
designed to find flaws in pseudo-optimal solutions.
The chart indicates that the maximal algorithm was
unable to find faults in our solution, and therefore
consistently looses as the competition progresses.
This does not suggest that there are no flaws in our
solution; rather that the flaws are so small that the
maximal opponent is unable to detect and exploit
them.

7 Future Work

As processing power and memory capacity
increases, the abstractions used can be slowly weaned
from the problem, and more precise solutions may be
derived. We believe that increasing the current 256
buckets per round will not yield substantive benefits;
rather an approach that does not totally eliminate

chance nodes, but replaces extensive chance nodes
(such as preflop to flop with 117 thousand branches)
with a smaller group of abstracted ‘bucketed’ branches
may lead to solutions far closer to optimality.

8 Conclusion

 The expansion beyond minimax approachable
games such as Chess and Backgammon has taken
computer science and game theory into new areas of
research. However, these new problems require
different methods of solution then perfect information
games, and presented is one such method applied to a
domain representative of many real-world problems.
Using proper abstraction techniques it is shown that
fictitious play can and succeed in approaching Nash
Equilibria in complex game theoretical problems such
as full-scale poker.

Acknowledgements

 Thanks go to Dr. C.-C. Chan for helping me
publish this work. Thanks are also extended to the
Department of Computer Science at the University of
Akron for supporting my research efforts.

References

[1] Brown, G.W. Iterative Solutions of Games by

Fictitious Play. In Activity Analysis of
Production and Allocation, T.C. Koopmans
(Ed.). New York: Wiley.

[2] D. Billings, N. Burch, A. Davidson, R. Holte, J.

Schaeffer, T. Schauenberg, and D. Szafron.
Approximating Game-Theoretic Optimal
Strategies for Full-scale Poker. Proceedings
of the 2003 International Joint Conference on
Artificial Intelligence.

