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Abstract 

 
A pseudo-optimal solution to the poker variant, 

Two-Player Limit Texas Hold’em was developed and 
tested against existing world-class poker algorithms.    
Techniques used in creating the pseudo-optimal 
solution were able to simplify the problem from 
complexity from O(10^18) to O(10^7).  To achieve this 
reduction, bucketing/grouping techniques were 
employed, as were methods replacing the chance 
nodes in the game tree; reducing it from a tree with 
millions of billions of terminal nodes, to a game tree 
with only a few thousand. 

 
When played in competition against several 

world-class algorithms, our algorithm displayed 
strong results, gaining and maintaining leads against 
each of the opponents it faced.  Using proper 
abstraction techniques it is shown that we are able to 
succeed in approaching Nash Equilibria in complex 
game theoretical problems such as full-scale poker. 
 
Keywords 
 
Fictitious play, Poker, Nash equilibrium, Game theory, 
Game tree reduction. 
 
 
1 Introduction 
 

Poker is a competitive card game formed of 
imperfect decisions punctuated by moments of chance.  
The variation of poker described in this article is 
known as Texas Hold’em. The game begins when each 
player is dealt 2 cards face-down.  Following the deal, 
a round of betting proceeds where players have 3 

options: call the current bet, and continue the game; 
bet, and raise the stakes of the game; or fold and 
remove themselves from the game at the benefit of not 
having to pay anything further.  This first round of 
betting is referred to as Preflop.  After the preflop 
betting round, three cards are placed face up on the 
board; all cards placed on the board are shared by all 
the players.  A round of betting continues, referred to 
as The Flop.  Following the flop, a fourth card is 
placed (The Turn), followed by a round of betting, and 
lastly a fifth card is place on the table (The River) 
followed by a final round of betting.  If more than one 
opponent is left at this stage in the game, a showdown 
occurs where the remaining players display their 
cards, and must form the most valuable 5 card hand 
using their 2 hidden cards, and the 5 community cards.  
The player with the most valuable hand wins all the 
chips placed in the pot throughout the game. 

 
To Summarize: 

1. Deal (2 cards each) 
2. Betting (preflop domain) 
3. Deal (3 cards shared between all players) 
4. Betting (flop domain) 
5. Deal (1 card shared between all players) 
6. Betting (turn domain) 
7. Deal (1 card shared between all players) 
8. Betting (river domain) 
 
Poker in general is of great interest to computer 

research and artificial intelligence since, in a very 
well-defined form, it exhibits many of the properties 
of real world situations including forced action under 
uncertainty of the current-world state, and being 
forced to act when the future state is uncertain.  The 
methods for solving poker can provide insight into 
developing applicable strategies for the development 
of more versatile artificial intelligence algorithms. 



 

The attempt to achieve near-optimal solutions to 
the game of poker is not a new concept; however the 
approach presented in this paper is unique, and 
contains several qualities which are distinct from 
previously developed pseudo-optimal solutions.  
Notably, in the domain of Texas Hold’em, an 
algorithm was developed in 2003 by a research group 
at the University of Alberta named PsOpti.  PsOpti has 
been shown to have extraordinarily strong 
performance versus human opponents and has bested 
all previously developed algorithms [2].  In section 6, 
results of competition between our algorithm, which 
we refer to as Adam and PsOpti are presented. 

 
 

2. Game Theory 
 
2.1 Definition of Game-Theoretic 
Optimality 

 
Game theory is an economic study of the strategic 

interactions between intelligent agents.  Through 
analysis of this interaction, proper behaviors can be 
derived to yield behavioral strategies that minimize an 
agent’s losses.  Such game-theoretic solutions are 
referred to as optimal, or as a Nash Equilibrium of the 
given game. 

 
A game-theoretic optimal solution is a fixed 

behavioral strategy containing a mix of random 
probabilities at decision nodes within the game tree.  
Following the stated strategy in an evenly balanced 
game will yield at worst a break-even situation over 
long-term play.  However, if the opponent is playing 
sub-optimally, and continues to make strategically 
dominated errors, an optimal player will be able to 
exploit these. If an opponent’s errors persist in the 
long-term, such a player will have no chance of 
winning against an optimal strategy. 

 
The key disadvantage of playing an optimal 

strategy is that the optimal play only accrues an 
advantage over opponents only when opponents make 
dominated errors.  For example: if there are three 
choices facing a human player at a given decision 
node, and the optimal strategy states to play choice A 
20% of the time, choice B 0% of the time, and choice 
C 80% of the time; if the human player were to choose 
action B, then that would be a dominated mistake, and 
the optimal opponent would gain an advantage.  
However, if the opponent were to choose A or C at 
any frequency (0%-100% of the time), this is a 
strategic error known as a non-dominated error; 
though this strategy may be suboptimal, an optimal 

player will be unable to gain any advantage from this 
behavior. 
 

An Example to Illustrate the Properties of Nash 
Equilibria and Dominated/Non-Dominated Error: 

 
The game Rock-Paper-Scissors (paper beats rock, 

rock beats scissors, scissors beats paper), has a 
remarkably simple optimal solution: play rock with 
1/3 probability, paper with 1/3 probability, and 
scissors with 1/3 probability. 

 
Using Rock-Paper-Scissors, it should be apparent 

that a strategy of ‘always play rock’, is not a preferred 
solution. However, if playing against an optimal 
opponent, the strategy will not incur any penalties 
since the player will continue to win 1/3 of the time, 
lose 1/3 and tie 1/3.  This is an illustration of non-
dominated error.  The player is not playing by the 
rules of the optimal solution, however since the 
optimal solution involves non-zero probabilities of 
playing rock/paper/scissors, any strategy involving 
those elements will not sustain any penalty when 
playing against an optimal opponent. 

 
A fourth element can be added to this game to 

demonstrate dominated error.  We can call the game 
Rock-Paper-Scissors-Dynamite (the only change to the 
rules is that dynamite beats rock, and is beaten by 
paper or scissors).  The optimal strategy given these 
rules is: play rock with 1/3 probability, paper with 1/3 
probability, scissors with 1/3 probability, and 
dynamite with 0 probability.  If playing against an 
optimal opponent and the decision is made to play 
dynamite, this incurs a dominated error, and the 
projected winnings from the game will decrease as 
result. 

 
After this example, it seems that playing 

dominated errors should be a rare occurrence in 
games, since the decision seems so clear cut.  
However, testing has shown that in complicated 
games, especially games of imperfect information, 
dominated errors occur often enough (even among 
pseudo-optimal players), that if played over the long-
term, weaknesses in strategy are evident [2]. 

 
2.2 Optimality through Fictitious Play 
 
2.2.1 Definition of Fictitious Play 

 
Fictitious play is a set of learning rules designed 

to produce agents capable of approaching optimality, 
and was first introduced by G.W. Brown in 1951 [1].  
The basic rules of fictitious play are: 1. that each 



 

player analyzes their opponent’s strategy, and devises 
a best response.  2. Once a best response is calculated, 
it is incorporated into or replaces the current strategy 
of the player.  3. The opposing player executes steps 1 
& 2 for themselves.  4. The whole process repeats 
until a stable solution is achieved.  Note that the ability 
of fictitious play to solve a game is not guaranteed, for 
in some rare cases solution stability can not be 
achieved. 

 
2.2.2 Solution to Simple Poker Variants 
Using Fictitious Play 
 
Prior to a large attempted solution using fictitious 
play, very basic poker games were constructed and 
solved, one of which is presented here: 
 
One-Card One-Round Poker (Figure 1): 
 

1. Each player places 1 chip in the pot. 
2. Each player is then presented with one card 

from a (in this case 169 card) deck. 
3. One player is designated to start the betting 

(Player 1). 
4. Player 1 makes a decision to bet, check, or 

fold. 
5. Player 2 then makes a decision to bet, 

check/call, or fold. 
6. The game ends when any player calls the 

other’s bet, or when any player folds. The 
maximum number of raises is 4. 

Figure 1 - Game tree representation of One-Card 
One-Round Poker 

7. After the betting sequence, the player not to 
fold, or the player with the higher card wins 
the pot. 

 
This simple poker variant was solved using fictitious 
play, the solution of which is presented in Figure 2 
with the terminal node connections removed. 

Figure 2 - Optimal solution to One-Card One-
Round poker.

 
 
 
 
 



 

3 Abstractions 
 
3.1 Nature of the Problem of Poker 
 
 The game of 2-player Texas Hold’em is a 
problem of size O(10^18) [2].  The sheer size of the 
problem makes clear the intractability of computing a 
perfect solution to the game, however there are several 
methods available that allow a reduction from 
O(10^18) to size O(10^7).  Though the problem has 
been reduced by a significant margin, its key 
properties can be preserved through appropriate 
abstraction, and a pseudo-optimal solution can be 
solved for this smaller, more manageable problem. 

 
3.2 Game Tree Abstraction 
 
 The purpose of using abstraction is to reduce the 
size of the solution algorithm without modifying in the 
underlying nature of the problem.  In poker, there are 
available several methods of abstraction which do not 
detract at all from the solution, two of which are 
position isomorphs (for the two cards in the hand, or 
the three cards in the flop, position does not matter), 
and suit equivalence isomorphs (4s 5h in the hand 
preflop is equivalent to having 4c 5d, et al.).  Using 
the available perfect isomorphs unfortunately does not 
reduce the game size to a significant enough degree to 
yield the problem solvable given current techniques. 
 

3.2.1 Bucketing/Grouping 
 

Bucketing is an excellent and commonly used 
abstraction technique that incurs minimal loss of 
information, and yields large reduction in problem 
size.  By grouping hands of similar value into buckets, 
we can abstract entire groups of hands that can be 
played similarly into a single quantum.  This method 
is conceptually very similar to using perfect 
isomorphs, for example, in our algorithm all 311 
million possible flop states are bucketed into 256 
categories; hands such as: “2h 4d, 3c 5s 6s” (hand, 
table) and “2d 5c, 4h 6d 3h” would be bucked 
together, and treated as having the same state.  The 
algorithm’s preflop domain contains 169 buckets, and 
each of the three following round domains contain 256 
buckets.  This is a significant improvement from 
previous solutions which used at most 6 or 7 buckets 
to describe each domain [2]. 

Figure 4 - Progression from Domain A to 
Domain B through a conversion matrix. 

Figure 3 - Progression from Domain A to Domain 
B through chance Node (magnitude 4).  In a real 
game tree, the chance node magnitude would be 
between 45 and 120,000.  

3.2.2 Chance Node Elimination 
 

For fictitious play to be a viable solution method, 
a well-defined, tractable game tree must be 
established.  In the pure solution (not abstracted), the 
tree can be represented as 4 tree domains (preflop, 
flop, turn, and river), each of which having 10 nodes 
(with exception of preflop because of special game 
rules, having 8) (refer to Figure 1 for an example of a 
single-domain tree).  As a leaf node from one domain 
proceeds to the next domain (through a check/call 
action in anything but the root of the domain), 
depending on the domain change, thousands of 
subtrees must be formed from the movement (Figure 
3).  This structure becomes quickly unusable, for as 
the tree continues to expand through chance nodes 
between domains, its size increases at a rapid 
exponential rate. 



 

In the solution presented, the problem regarding 
the exponential blow-up of the game tree size is 
addressed by eliminating chance nodes between 
domains completely.  Though removal does introduce 
error, the essence of the chance nodes are preserved 
and replaced by conversion matrices which provide 
similar function while reducing the exponential blow-
up of the game tree (Figure 4). Using this strategy, 
each leaf node has exactly one sub domain tree 
associated with it.  This produces a considerably 
lighter game tree to solve, and with the chance nodes 
removed from the solution, the problem is reduced to 
solving a tree with 6468 decision nodes instead of 
quite literally millions of billions of nodes. 

 
3.2.3 Transition Probabilities 
 

Since the chance nodes have been completely 
removed from the game tree, and a bucketing 
approach is being used to represent states within each 
domain, a method to convert buckets from a Domain A 
to equivalent buckets in a Domain B requires a series 
of transition probabilities.  This process can be 
accomplished with a conversion matrix, where each 
column represents a bucket within Domain A, and 
each row represents the corresponding probability that 
the Domain A bucket will translate into the Domain B 
bucket represented by the column number (Figure 5).  
These conversion matrices are expensive to compute, 
as each must be representative of the thousands of 
chance nodes which they replace. 
 
3.2.3.1 Masking Transition 
 

The first method explored, and one which proved 
to work fairly well, was to create generic 
transformation probabilities, convert the buckets from 
domain to domain, and then mask the converted 
bucket probabilities based on specific information 
about the game-state of Domain B (Figure 6). This 

method produces a generic conversion that while 
being imperfect, shares the same statistical properties 
as a tailor-made conversion distribution based on the 
specific game state.  This method also has the benefit 
of being faster to calculate on the fly, requires less 
before-hand calculation, and requires less memory 
overhead than the perfect transition discussed next. 

 
3.2.3.2 Perfect Transition 
 

By calculating before-hand for every possible 
game-state its corresponding bucket, it is possible to 
use this information on the fly to create a tailor-made 
conversion matrix based on the game-state of Domain 
A, and the game-state of Domain B.  This approach 
offers a great advantage in that it allows ‘perfect’ 
transitions between domains rather than a convincing 
generic transition offered by a masking method.  The 
first of three issues invited by using this method is that 
since there are so many possible game states, the 
matrix must be created on the fly; reserving the 
computational resources required to create these 
matrices slows down calculation considerably.  The 
second issue is that the buckets for each game-state 
must be known in advance (a task which depending on 
the problem size can easily be intractable).    The last 
issue is that (in the case of the current implementation) 
the buckets for these hundreds of millions of states, 
once calculated, must reside in memory; using the data 
off the hard drive at this time seems to be an 
unattractive option for speed concerns. 

Figure 5 - Progression from Domain 1 with 
possible states {A,B,C,D} to Domain 2  with 
possible states {a,b,c,d} using a conversion 
matrix 
Assumptions: 
P(A)+P(B)+P(C)+P(D) = 1 
P(a|x)+P(b|x)+P(c|x)+P(d|x) = 1 

 
 
4 Training an Optimal Player 
 

Our algorithm which we refer to as Adam, was 
trained using a technique based on Fictitious Play 
(section 2.2), described earlier; the premise behind the 
training is that if two players who know everything 
about each other’s playing style adapt their own styles 
long enough, their playing decisions will approach 
optimality.  This optimality is achieved in Adam by 
subjecting the decision tree to randomly generated 
situations, analyzing how to play ‘correctly’ for the 
specific situation (based on how we know we will play 
and our opponent will play), and adapting the generic 
solution slightly toward the correct action just 
discovered.  To solve two-player Texas Hold’em, 
hundreds of thousands of iterations of this basic 
procedure need to be applied to every node of the 
decision tree before the solution suitably approaches 
optimal play. 
 
 



 

5 Playing Adam 
 

Game theoretic solutions are distinguished in that 
the strategies produced are randomized mixed 
strategies; however though Adam is pseudo-optimal, 
the strategies produced are not entirely mixed.  The 
decision tree represents a trimmed version of the 
optimal decision tree (one which would include all 
chance nodes between domains).  Because of the 
abstraction chosen, the flop, turn, and river domains 
do not have a direct relationship with their optimal 
cousin; however the preflop domain remains 
unchanged even after the abstraction.  This 
dissimilarity between domains translates into different 
approaches toward using the game tree in actual game 
play.  In evaluating preflop states, Adam is able to rely 
on its preflop solution to provide approximate game-
theoretic optimal strategies, and in turn, Adam uses the 
mixed strategies developed for preflop within its game 
play.  Post-flop, Adam can not rely on the generic 
strategies developed through training to be suited for 
current board conditions, and must use them solely for 
reference to estimate future actions.  Adam, given 
current information then queries the sub tree from the 
current decision node, and chooses the action which is 
assessed to have the highest value. 
 
 
6 Experimental Results 
 
 Adam was played in competition against two 
algorithms created by a team of researchers from the 
University of Alberta: PsOpti, a pseudo-optimal 
solution, and Vexbot, a maximal algorithm.  This 
research group has released a software package called 
Poker Academy.  A pseudo-optimal solution for Two-
Player Texas Hold’em was generated by our algorithm 
was placed in competition with both PsOpti and 
Vexbot via interfaces provided in their software.  
Figures 6-8 illustrate the results of the competition. 
 
 

 
Figure 6. 20,000 hand performance against PsOpti.  
(winnings on the y-axis, hands played along x-axis) 

 

 
Figure 7. 20,000 hand performance against PsOpti.  
(winnings on the y-axis, hands played along x-axis) 

 

 
Figure 8. 50,000 hand Performance against Vexbot. 
(winnings on the y-axis, hands played along x-axis) 

 
 
 Both Figure 6 and Figure 7 represent separate 
competitions against another pseudo-optimal 
opponent.  That our solution is able to consistently win 
against this player suggests that the solution generated 
by our algorithm is significantly closer to true 
optimality. 
 
 Figure 8 represents a competition between our 
derived solution, and a maximal algorithm which is 
designed to find flaws in pseudo-optimal solutions.  
The chart indicates that the maximal algorithm was 
unable to find faults in our solution, and therefore 
consistently looses as the competition progresses.  
This does not suggest that there are no flaws in our 
solution; rather that the flaws are so small that the 
maximal opponent is unable to detect and exploit 
them. 
 
  
7 Future Work 
 

As processing power and memory capacity 
increases, the abstractions used can be slowly weaned 
from the problem, and more precise solutions may be 
derived.  We believe that increasing the current 256 
buckets per round will not yield substantive benefits; 
rather an approach that does not totally eliminate 



 

chance nodes, but replaces extensive chance nodes 
(such as preflop to flop with 117 thousand branches) 
with a smaller group of abstracted ‘bucketed’ branches 
may lead to solutions far closer to optimality. 
 
 
8 Conclusion 
 
 The expansion beyond minimax approachable 
games such as Chess and Backgammon has taken 
computer science and game theory into new areas of 
research.  However, these new problems require 
different methods of solution then perfect information 
games, and presented is one such method applied to a 
domain representative of many real-world problems.  
Using proper abstraction techniques it is shown that 
fictitious play can and succeed in approaching Nash 
Equilibria in complex game theoretical problems such 
as full-scale poker. 
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