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ABSTRACT

When dealing with randomly located or clustered data, interpolation error will
vary as the distance to the nearest sample or cluster of samples. The current predominant
methods for interpolating non-uniform data are not guaranteed to handle this variability
of error well. The non-uniformity of the error surface can easily lead to gross
misinterpretations of the interpolated values by the end user.

In order to address this limitation of the existing algorithms, this paper examines a
method based on the physical structure of an infinitesimally small sphere at the point of
interpolation. Using this structure we are able to interpolate based on the ‘illumination’
of nearby sample points.

Our analysis shows that Microsphere Projection is a viable interpolation
technique, and in some cases surpasses the abilities of existing techniques. In one
dimension, Microsphere Projection proves to be as accurate as piecewise cubic spline
interpolation. In two dimensions, the accuracy of Microsphere Projection seems to
outperform thin-plate spline interpolation; and in three dimensions its performance is at
least on par with existing techniques. In hyper dimensions it is expected that
Microsphere Projection will be even more useful due to its stable extrapolation

properties.
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CHAPTER I

INTRODUCTION

Because of modern digital image processing, there exist many extremely precise
and well-researched algorithms for interpolating values between regular, abundant
sample points. Digital images can be represented as a perfectly-ordered two-dimensional
grid of known color values. This grid can be resized or distorted in a number of ways
using a host of algorithms, most common of which are Nearest-Neighbor, Bilinear, and
Bicubic interpolations [7]. Although these algorithms perform remarkably well with a
perfectly-ordered grid of sample points, their usefulness can be quickly outlived when the
provided data is non-uniformly distributed across the sample space.

With variability of location, variability of interpolation error increases as well.
The existing methods have weaknesses when dealing with the most error-prone areas.
These weaknesses include over-smoothing of the interpolation region, and large
instabilities of the interpolation surface near the edges of the sampled region. Both over-
smoothness and instability can easily lead to misinterpretations by the end user when
visualized [8].

Though perfectly gridded 2 or 3-dimensional sample locations are the ideal, the
practicality of sensing data at precisely the correct grid locations is difficult if not

impossible in many applications.



Examples of non-uniform data sources include:
e Detecting soil pollution levels at various depths in an area.
e Measurements of furnace temperature at various locations.
e Mineral concentrations at various depths.
e Pressure values at various points on the surface of a wing.

¢ EEG measurements from electrodes attached to the scalp.

The most common non-uniform patterns of samples include [5]:
e Linear arrangements of sample points intersecting the volume (e.g., drill holes).
e Planar arrangements of sample points intersecting the volume (e.g., slices).
e Clusters of sample points such that there are many groups of samples close

together with large distances between the groups.

The algorithm introduced in this paper aims to provide a means of interpolating
multi-dimensional data which is accurate, stable, and can assure more intuitive results
across the extremes of the interpolation surface. Since Microsphere Projection is
designed primarily to address non-uniform data, this paper will restrict its discussion to
the set of algorithms which are designed to handle non-uniform data. This will exclude
both Bilinear and Trilinear interpolations.

In Chapter 2, we discuss existing non-uniform interpolation methods and their
implementations. Chapter 3 provides a detailed analysis of the Microsphere Projection

algorithm. In Chapter 4 we present an analysis and comparison of various 1D, 2D and
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3D case studies and the experimental results obtained from those studies. Chapter 5

contains concluding remarks and notes for future work.

1.1 Local vs. Global Interpolation

All interpolations are based on a set of sample points; these are points in space
with known values. Local interpolations are methods which make use of the information
from only a small set of nearby sample points, and global interpolations attempt to make
use of the entire set of sample points. Local interpolations are common in one-
dimensional interpolations, some of which will be discussed later; however these
localization methods come at a cost in higher dimensions. In two-dimensions and higher,
it is increasingly difficult to ‘localize’ the sample points without loosing differentiability
(a key property) of the interpolation, so all of the common interpolation techniques in 2D
and 3D tend to be global techniques.

Depending on how the terms ‘local’ and ‘global’ are interpreted, Microsphere
Projection may be placed in either category. In the degenerate one-dimensional case,
Microsphere Projection mimics the behavior of a local interpolation. However, in higher
dimensions, the number of sample points affecting the interpolated value is not

necessarily limited.

1.2 Exact vs. Inexact Interpolation
Depending on the application, the values sampled at the sample locations may

have an error range. If the values are not known with certainty, then it is a common



practice to use an inexact approximation which follows the general trend of the data, and

is not guaranteed to pass through any of the data points exactly. See Figure 1.1.

However, if the primary loss of information (the primary difficulty) with the data

is not regarding error in the sample value, but in scarcity of data locations, then an exact

approximation is better suited to interpolate the data.

The Microsphere Projection

algorithm is an exact interpolation; and since we would prefer to compare the algorithm

to others with similar behavior characteristics, all of the algorithms and methods

discussed in this paper are various forms of exact interpolation functions.
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Figure 1.1. Comparison of exact and inexact functional approximations.



1.3 Differentiability Classes

Differentiability is a valuable property of an interpolation algorithm. It provides
not only mathematical benefits, but also guarantees a visually smooth image.
Differentiability refers to the ability to take derivatives over the line, surface or volume.
Differentiability Classes are differentiated by the number of derivatives which one can
take before the function becomes either zero throughout or non differentiable. These
classes are written CO, Cl, Cz, etc. If a function is C° then this indicates that the function
is either non-differentiable, has a discontinuous first derivative, or the first derivative is 0
everywhere. A function that is C" has a continuous N-1(th) derivative, however the Nth

derivative is either non-differentiable or 0 everywhere.

1.4 Interpolation vs. Extrapolation

In general, interpolation is defined as the “guessing” of values within the convex
hull formed by the sample point locations. “Guessing” at values beyond the convex hull
constitutes extrapolation; even if the points are within the bounding box. For a visual

example of this relationship, see Figure 4.37.



CHAPTER II

SURVEY OF EXISTING NON-UNIFORM DATA INTERPOLATION METHODS

Non-uniform data interpolation is a well-researched field with a wide variety of
existing algorithms. These algorithms have may strengths and weaknesses dependant on
the context and dimensionality in which they are used. The following sections discuss a

few of the popular algorithms.

2.1 Nearest Neighbor Interpolation

Nearest Neighbor Interpolation is perhaps the most simplistic method for
interpolating data. As the name implies, the algorithm chooses the interpolated value to
be equal to the value of the sample point which is closest to the interpolation location.
See Figure 2.1.

Though exhibiting excellent execution time, NN interpolation has several
drawbacks when applied to real data. These include non-differentiability (class C°),

extremely high error rates, and non-intuitive visual results.



1-Dimensional Nearest Neighbor Interpolation

e |nterpolation

—&— Control Points

m

m

m

1]
m

Figure 2.1. Example of Nearest Neighbor interpolation.

2.2 Polynomial Interpolation

Polynomial interpolation involves the mapping of a polynomial function to
approximate the sampled data values. The constants in the polynomial function can be
derived easily by solving a Vandermonde matrix populated with values derived from the

sampled points [4]. See Formula 2.1.

1ox, %~ - x| c Yo
2 n-1
1 X1 X1 e X1 CI yl
1 X, X - X" |c =Y, 2.1
2 n-1
_1 Xn—l Xn—l Xn—l __Cnfl_ _ynfl_

Definition of an interpolating polynomial using a Vandermonde matrix. X, represnts the

1D location of the sample, y, represnts the value sampled at that location. The one-

dimensional interpolating polynomial is defined by ¢y + ¢ix + ¢ox” + ... + cox"".



A pure polynomial model of the data is very straightforward; however this
approach has significant drawbacks. Even simple polynomial regressions can produce
functions that oscillate wildly between sample points. The oscillation is directly related
to the degree of the polynomial and the distance from the center of mass of the sample
points. This property of polynomial interpolations is referred to as Runge’s Phenomena.

See Figure 2.2.

1-Dimensional Polynomial Interpolation
degree=12

Interpolation

—&— Control Points

= = =Actual Function (Sin(x)) |

Figure 2.2. Example of polynomial functional approximation.

2.3 Shepard’s Method Interpolation (Inverse-Distance Weighting)

Aside from using Nearest Neighbor, Shepard’s Method is the most simplistic
method to interpolate irregular data. The implementation of Shepard’s Method is very
similar to the method for calculating a body’s center of mass. First, the algorithm
introduces a ‘weight’ assigned to each sampled point which is inversely proportional to
the distance between the sample and the interpolation location. The final interpolated
value is given by: Sum(weight*sampleValue) / Sum(weight) [6] (see Formula 2.2).

Given perfectly random sample locations, Shepard’s Method will excel in simplicity and



accuracy; however there are a few drawbacks when dimensionality and clustering of

sample locations are taken into consideration.

N
Dvd

i=1
f(V)= 'N— 22

2. d"
i=1

Mathematical form of Shepard’s Method of interpolation. The term d; is the Euclidian
distance between location V and sample point i. The term p is an arbitrary inverse
distance propagation power (p > 0, p = 2 is accepted as standard). v; is the value of

sample point i. N is the number of sample points.

Shepard’s Method does not adequately handle dense clusters of redundant data.
Since the only information taken into consideration when determining weights is that of
distance from the interpolation location, sample points with identical values and nearly
the same coordinates will inappropriately bias the interpolated value. An extreme case of
this can be seen in Figure 2.3 where there are only 3 sample points, two of which have

the same value and nearly the same coordinate position.



OO

@
d

Figure 2.3. Illustration of the problem with naive inverse distance weighting. The

interpolation in the middle should have a value close to '% black, 'z white... however

naive inverse-distance weighting suggests it should be 2/3 white, 1/3 black.

Another difficulty with Shepard’s Method is the choice of the ‘propagation of
influence’ power. Classically, this variable is set to ‘2°, as physical propagation through
three dimensions typically occurs as the inverse of the distance squared. However, when
dealing with 2-dimensional or N-dimensional interpolation problems, an obvious choice

for this value does not present itself easily [5].

2.4 Cubic Spline Interpolation

The term ‘spline’ originated in the architect’s draft room where when a curve was
needed, a very thin piece of wood would be fit between the points, bent slightly, and
traced. Cubic spline interpolation is designed for 1-dimension, and is based on fitting
localized cubic polynomials to each segment of the graph such that the entire

interpolation has a continuous second derivative (class C?). See Figure 2.4.
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1-Dimensional Cubic Spline Interpolation

e nterpolation
—a8— Control Points

= First Derivative

= Second Derivative

Figure 2.4. Interpolation of a set of data points using a cubic spline. The derivates have

been included to demonstrate the second-differentiability of the interpolation (Class C2).

The cubic spline interpolation is very good at providing a smooth approximation
of 1-dimenional data. The major drawbacks are the inherently oscillatory nature of the

interpolation, and the inextensibility to higher dimensions.
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2.5 Thin-Plate Spline Interpolation

Thin-plate spline interpolation is a common interpolation method for 2-
dimensional data. Much like cubic spline interpolation for 1-dimension, thin-plate
splines are based on a physical process. The physical process approximated is that of
‘bending’ what would be a thin, flat metal plate over the x-y coordinate grid, to intersect
the values of the sample points in the z-direction above or below the x-y plane [1]. See

Formulas 2.3 and 2.4.

N
f(x,y)=c, +c,x+c,y+> bd,” log(d,) 2.3

i=1
Mathematical form of the Thin-Plate Spline interpolation. The term d; is the Euclidian

distance between location (x,y) and sample point i [1].

0 dlz2 logd,,) dl32 logd,;) - dm2 logd,,) 1 x Yy |b Vi
dzl2 logd,,) 0 dzzz log@d,;) - d2n2 logd,)) 1 % Y, [b| |V
d312 log@d;,) d322 logd,) 0 d3n2 logd,,) 1 X yy|b| |V
d, ’logd,) d,’logd,) d,*logd,) - 0 1 x, vy, b, B v, 24
1 1 1 00 0fc||o0
X, X, X, X, 0 0 0]C,| |0
7 Y Ys Yo 0 0 0]J¢] [0]

Matrix to determine constants b; through b, u, and ¢y, ¢, c3 used in Thin-Plate Spline
interpolation. The term dj; is the Euclidian distance between sample point i and sample

point j. The term v; is the value at sample point i [1].
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2.6 Volume Spline Interpolation

An extension of the Thin-Plate Spline interpolation to three dimensions, Volume
Spline interpolation represents the theoretical ‘bending’ of a three-dimensional volume.
This interpolation method is a very common method used in the interpolation of data in

three-dimens. See Formulas 2.5 and 2.6.

N
f(xy.z)=c, +c,x+c,y+c,2+ Y bd’ ’ 5

i=1
Mathematical form of the Volume Spline interpolation. The term d; is the Euclidian

distance between location (x,y) and sample point i [3].

0 dlz3 dl33 1n3 1 XY %4 _bl_ I 1—

dzl3 0 dzs3 dzn3 L X Y, ,|h v

dsl3 d323 0 ) d3n3 Lox oy 730 3

d’ d,) d. 0 1 x vy z (b |=|v, 2.6
1 1 1 0 0 0 0)¢ 0

X XX x, 00 0 0]c,| |O

Yi Ys Y Y 00 0 0f¢ 0
7z, 7, 14 z, 00 0 O]fc,| [O]

Matrix to determine b; through b, and ¢, ¢, c3, ¢4 used in Volume Spline interpolation.
The term d;; is the Euclidian distance between sample point i and sample point j. The

term v; is the value at sample point i [3]..
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The primary difference between volume spline interpolation and thin-plate spline
interpolation is the modification of the radial basis function from dzlog(d) in thin-plate
spline to d’ in volume spline interpolation. This can be seen clearly when comparing the
sets of linear equations used in calculation of the functional coefficients (see Formulas

2.3 and 2.5)

2.7 Multiquadric Interpolation

Multiquadric Interpolation is an often-used 3-dimensional interpolation which is
calculated very similarly to volume splines. The derived function is nearly the same form
as volume splines, however the non-radial coefficients are removed and the radial basis
function is modified slightly. The radial function includes a term $ with >0, B =1 is

common practice. See Formulas 2.7 and 2.8.

f(x, 3y,z)=it>m/c;|i2 + 3 2.7
i=1

Mathematical form of the Volume Spline interpolation. The term d; is the Euclidian

distance between location (x,y) and sample point i. 3 is an arbitrary constant, >0 [3].
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_ 0 \/dlz2 +ﬁ2 \/dw2 +ﬁ2 \/dlnz +ﬁ2 }bl } _Vl |
\ldzlz +5° 0 1/d232 +p /d2n2 b |y,
\/d312 +ﬂ2 \/d322 +ﬁ2 0 w/dmz +,B2 b.s = V’3 2.8

_\/dn12.+ﬁ2 \/dnzz.‘f‘,g2 \/dn32.+ﬂ2 0 J‘bn‘ L]

Matrix to determine b; through b, used in Multiquadric interpolation. The term d;; is the
Euclidian distance between sample point i and sample point j. The term v; is the value at

sample point i. [ is an arbitrary constant, >0 [3].
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CHAPTER III

MICROSPHERE PROJECTION: DESIGN AND IMPLEMENTATION

3.1 Algorithm Description
3.1.1 Physical Premise

Microsphere projection is based on the physical model of an infinitesimally small
sphere located at the point of interpolation. This tiny sphere is then ‘illuminated’ by the
surrounding sample points. Based on the degree of illumination on various parts of the
sphere by various sample points, a series of weights for all the sample points are

assigned. These weights, when applied, yield our interpolated value for the location.

3.1.2 Description of the Sphere

The surface of the Microsphere is divided into a large number of equally-spaced
regions. Each region records for itself which sample point has illuminated it the most,
and what illumination that sample point has provided. Each surface region is represented
by a single unit vector pointing out from the center of the sphere to the center of that
region. “S[i].Vector” will be used to represent the unit vector for surface region i. The
more regions used, the greater the precision of the interpolation. Throughout Chapter 4:

Experimental Results, the value of 2000 was used for the number of surface regions.

16



For each region, two values are recorded: one recording the index of which
sample point has illuminated this section the greatest, and the second recording the
degree of illumination from this point. These will be referred to as
“S[i].Brightest Sample” and “S[i]. Max_Illumination”, respectively.

Since determining an arbitrarily large number of equally-spaced regions on the
surface of a sphere is no small task, we accept that a large number of randomly placed
unit vectors will provide a fairly uniform distribution. The vectors are generated using

the algorithm in Figure 3.1.

do
/I x,y,z are uniformly-distributed random numbers in the range (-1,1)
X :=rand(-1,1)
y :=rand(-1,1)
z :=rand(-1,1)

vectorSize := sqrt (X*X + y*y + z*z)

/I if the vector these points form is outside the unit sphere,
/Il disregard and find a new vector.
while (vectorSize > 1)

/l normalize the vector, so that it forms a unit vector for the surface of our sphere.
X := x [ vectorSize
y :=y [/ vectorSize
z =z / vectorSize

Figure 3.1. Pseudo-code controlling the creation of unit vectors defining spherical

segments of a Microsphere in 3-dimensions.

3.1.3 Applying Illumination to the Sphere
Net illumination is applied to the microsphere by iterating through each of the
sample points, and applying illumination to the sphere one-by-one. It should be noted

that illumination on various parts of the sphere decreases proportionally to the acuteness

17



of the angle between the surface of the sphere and the direction of the sample point.
Illumination also decreases as the distance between the microsphere and the sample point
increase. See Figure 3.2. Much like Shepard’s Method, this inverse relationship between
distance and ‘brightness’ is governed by a power value ‘p’ specified by the user where
p>0, p=1 and p=2 are typical values. p=1 yields an interpolation that is C° (non-
differentiable), p > 1 is C' (first-derivative is continuous). Similar to Shepard’s Method,
as p—o, the closest points dominate the interpolation and the algorithm becomes the

equivalent of Nearest Neighbor.

Figure 3.2. Illumination of a 2-D Microsphere by a single sample point in two separate

cases. Note how the acuteness of the surface section and the distance of the sample point

are taken into consideration. Sphere precision = 16.
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Because we are using an inverse distance weight for each point (ie, 1/d”), when
d=0 we have an issue. Thus, a simple check is implemented early on in the algorithm to
see if we are interpolating at the location of a sample point. Since Microsphere
Projection is an exact interpolation method, we simply return the value of the sample as
our interpolated value. The following algorithm located in Figure 3.3 is the algorithm

used to calculate the illumination values for each segment of the sphere:

for i := 0 to Number of Samples

/I vector connecting the current sample to the interpolation location
vectorl := sample[i].XYZLocation - interpolation.XYZLocation

/l the distance-modified weight of this point
Il p >0, typically p=1 or p=2.
weight := pow(vectorl.Size, -p)

/I the value of ‘Precision’ represents how many subdivisions
/I of the surface of the microsphere we are working with.
for j := 0 to Precision

/I each sample only 'shines' on one hemisphere.

/I as the angle becomes more acute, the intensity

/I of that shine decreases as the cosine function

cosValue := CosValueBetweenVectors(vectorl, SJj].Vector)

/1 if the brightness of the shine on this section of the sphere

/I is more than any other point thus far checked, update our

/I 'Brightest_Sample' and 'lllumination’ data.

if (cosValue * weight > SJ[j].Max_Illlumination)
S[j]-Max_lllumination := cosValue * weight
S[j].Brightest_Sample ;=i

endif

endfor
endfor

Figure 3.3. Pseudo-code controlling the application of illumination to the Microsphere.
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In the inner-most loop of our algorithm, we have a function call and a simple if-
statement. The if-statement requires very little execution time. To determine the cosine

of an angle between two vectors, a function is implemented using Formula 3.1.

cos@b)=

‘aeb
FIE >

Formula to calculate the cosine of the angle between vector ‘a’ and vector ‘b’.

Since the sizes of both vectors are known in our case, the only calculations
needed are with regard to the dot-product. These are fairly straightforward, and require

very little execution time by the processor.

3.1.4 Accumulation of the Final Values from the Sphere

Once all the calculations are complete regarding the maximum illuminations on
the various sections of the sphere, we must make use of this data to produce a single
interpolated value. To do this, we assign a weight to each sample point equal to the total
illumination that point provided to the sections of the sphere. Note that each section of
the sphere only records data regarding the point which provided the most illumination;
sample points which did not out-shine any other points on any section of the sphere are

assigned a weight of 0. See Figure 3.4.
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/I accumulate the data from our sphere, and determine final interpolation

value ;=0

totalWeight := 0

fori:= 0 to Precision
value := value + S[j].Max_Illumination * sample[S[j].Brightest Sample].SampledValue
totalWeight ;= totalWeight + S[j].Max_lllumination

endfor

/I the final interpolated value generated by the algorithm
interpolation := value / totalWeight

Figure 3.4. Pseudo-code controlling the accumulation of data from the sphere, and

determination of final interpolation value.

3.2 Mathematical Form

Together with Formula 3.1, Formulas 3.2-3.4 present the final mathematical form

of the interpolation.

w :{max(ulj —|H"’ cos;, 1, — ) j e{1,2,3,...,N}} 3.2
m, ={Vj ]max(”lj - I“_p cos@;,1; —1)),] 6{1,2,3,...,N}} 3.3
Vi [1=1,ie{23,....N}} 3.4

P

_J>mw,
fh=113 otherwise
V\[i
i=1

| = Location of interpolation

p = Propagation of influence power, p>0

Vi = Value of sample i, i< {1,2,3,...,N}

li = Location of sample i, i€ {1,2,3,...,N}

N = Number of samples
si = Evenly spaced unit vector on surface of sphere, i< {1,2,3,...,P}
P = Precision (number of unit vectors on sphere), P >> 2D

d = Dimensionality of data (d=2 is planar)
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3.3 Runtime Analysis
Runtime analysis is important in understanding how the running time of the
algorithm will increase or decrease with the change in quantity of inputs. The next few

lines describe the behavior of the running time for Microsphere Projection.

N = Number of samples

P = Precision (number of unit vectors on sphere)

Determining the position of the unit vectors: O(P).

Calculating maximum illumination and illuminating point for each surface section:
O(P*N).

Accumulating the final interpolation value: O(P).

Overall Runtime: O(P*N).

3.4 Strengths of Microsphere Projection

MS Interpolation exhibits the Maximum Principle. In other words, the
interpolated value is guaranteed to lie in the range between the minimum sampled value
and the maximum sampled value. Other interpolation techniques which demonstrate this
quality include Nearest Neighbor interpolation, and Shepard’s Method (naive inverse-
distance weighting). This feature was chosen because it is guaranteed to provide intuitive
results for bounded data.

MS Interpolation is guaranteed to preserve monotonic and strict monotonic

behavior over any set or subset of sample points. For example, if the set or subset of
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sample points is increasing or strictly increasing over a range, then the interpolation is
guaranteed to be increasing or strictly increasing over the same range.

MS Interpolation demonstrates no oscillatory behavior between sample points,
unlike functional approximations which are designed to preserve high differentiability.
See Figures 2.3 and 2.6 for examples of oscillatory functional behavior.

MS Interpolation provides a stable extrapolation ability. Functional
approximations tend to produce extremely volatile extrapolation results beyond the range
of the data points (see Figure 2.3). This can cause serious issues in higher dimensions
where the differentiation between interpolation and extrapolation within the volume is
difficult to determine (see Section 4.4). Because MS Interpolation provides a stable
extrapolation, it has considerable benefits over functional approximations when

visualizing higher dimensional data. This will be discussed further in following sections.

3.5 Weaknesses of Microsphere Projection

MS Interpolation is only class C' so long as p>1, C° otherwise. This means that
the interpolation will have a continuous first derivative, however no guarantees are made
of the second derivative of the interpolation.

Depending on the nature of the problem, the fact that MS Interpolation exhibits
the Maximum Principle can be an issue. That the interpolation method is unable to
interpolate a value beyond the scope of the sampled values can cause problems
depending on the context.

Depending on the size of the data set and other considerations, MS Interpolation

can require more computation time than some of the other interpolation algorithms.

23



Though the overall runtime is O(P*N), this set of calculations must be run every time a
point is to be interpolated. Radial Basis Function (RBF) interpolations such as Thin-Plate
Spline, Multiquadric, and Volume Spline are all O(N?) (using Gaussian elimination) for
the first interpolation and O(N) (with a very small overhead) for subsequent
interpolations.

As interpolation location approaches a sample point, the first derivative in all
dimensions approaches 0 when p>1. In most contexts this is undesirable behavior;
however it is necessary if we wish to preserve the Maximum Principle in conjunction

with differentiability.
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CHAPTER IV

EXPERIMENTAL RESULTS

4.1 One-Dimensional Interpolation
4.1.1 Aberration Test — Case Study

This test simulates a series of constant values with a single aberrant value placed
in the middle. Ideal interpolative behavior should show the values towards the edges
approaching the horizontal asymptote formed by the lower sample points. This test is
representative of many situations where the sampling period is larger than the period of
the underlying function or event. In other words, the data could be said to be ‘sparse’ or

the underlying function to be ‘volatile’ or ‘turbulent’.

1-Dimensional Nearest Neighbor Interpolation

e |nterpolation

—&— Control Points

m

11]
m
m
m

Figure 4.1. Nearest-Neighbor interpolation of simple aberration data set.
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Nearest-Neighbor interpolation forms a fairly ‘boxy’ interpolation of the points

and is discontinuous between sample points with different values. See Figure 4.1.

1-Dimensional Polynomial Interpolation

degree=4 e |nterpolation
—&— Control Points

= First Derivative

Figure 4.2. Polynomial interpolation of simple aberration data set.

Polynomial interpolation provides high differentiability (C?), though gross error

margins when interpolating farther from the center. Extrapolation is not tenable with this

model. See Figure 4.2.
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1-Dimensional Inverse-Distance Interpolation

p=2 e |nterpolation
—a&— Control Points

= First Derivative

Figure 4.3. Shepard’s Method (naive inverse-distance) interpolation of simple aberration

data set.

Inverse-Distance interpolation forms a smooth C' interpolation, however the

interpolation values on the edges are not ‘flat’. Extrapolation values approach the average

value of all sample points. See Figure 4.3.
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1-Dimensional Cubic Spline Interpolation

e Nterpolation
—&— Control Points

= First Derivative

= Second Derivative

Figure 4.4. Cubic Spline interpolation of simple aberration data set.

Cubic Spline does not provide the ‘flatness’ on the edges we would hope for.

Extrapolation is not tenable with this model. See Figure 4.4.
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1-Dimensional MS Projection
p=1

e |nterpolation

—&— Control Points

/o N\
/ \
/ N

11]
m

Figure 4.5. Microsphere Projection, p=1 interpolation of simple aberration data set.

Microsphere Projection with p=1. Setting p=1, Microsphere Projection becomes
the 1-dimensional equivalent of piecewise linear interpolation. This model satisfies our
endpoint criteria, however its non-differentiability may cause problems.

Note that this method is not equilivent to naive inverse-distance interpolation
because it generates a piecewise interpolation. Shepard’s method assigns non-zero
weights to all points in 1D, however MS Interpolation in 1D only assigns non-zero
weights to the local points (those on the left and right of the interpolation location). See

Figure 4.5.
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1-Dimensional MS Projection
p=2 = |nterpolation
—B— Control Points
/N
= E/ \._. 8
- First Derivative
7\
F AN
\
/s N,
N 7
AY /
A
\N/

Figure 4.6. Microsphere Projection, p=2 interpolation of simple aberration data set.

Microsphere Projection with p=2. Setting p=2 provides the differentiability that
is lacking with p=1. The graph can be described as a smoothed version of piecewise-
linear or nearest neighbor interpolation. This method satisfies our endpoint expectations.

See Figure 4.6.

4.1.2 Stair-Climb Test — Case Study

This test simulates a series of linearly increasing values with an aberrant value at
the end of the sequence. Ideal interpolative behavior should linearly connect the sample
points or at the very least preserve the monotonic behavior of the first four points, with a

smooth curve to the aberrant point at the end. This test is representative of many
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situations where the period of the underlying function is much larger than the period of
the samples. In other words, the data set could be regarded as smooth or the sampling as

being dense.

1-Dimensional Nearest Neighbor Interpolation

e |Nterpolation

—&— Control Points

m

11]

m

m
m

Figure 4.7. Nearest-Neighbor interpolation of simple smooth data set.

Nearest-Neighbor’s ‘boxy’ interpolation of the points is undesired. The

discontinuities (upward jumps in the graph) between the sample points are undesirable as

well. See Figure 4.7.
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1-Dimensional Polynomial Interpolation

degree=4 = |nterpolation
—&— Control Points

= First Derivative

Figure 4.8. Polynomial interpolation of simple smooth data set.

Polynomial interpolation provides high differentiability (C*), and seems to work

very well for this data. Extrapolation is not tenable using this interpolation model. See

Figure 4.8.
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1-Dimensional Inverse-Distance Interpolation

p=2 e nterpolation
—&— Control Points

= First Derivative

Figure 4.9. Shepard’s Method (inverse-distance) interpolation of simple smooth data set

Inverse-Distance interpolation forms a smooth C' interpolation, however the
derivative values at the intersection of the sample points is always 0 and the monotonic
behavior of the first four sample points is not preserved in the interpolated values.
Extrapolation values approach the average value of all sample points at the edges. See

Figure 4.9.
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1-Dimensional Cubic Spline Interpolation

e nterpolation
—&— Control Points

- First Derivative

= Second Derivative

Figure 4.10. Cubic Spline interpolation of simple smooth data set.

Inverse-Cubic Spline interpolation works fairly well in this case. Only for a very

short period at the peak is the monotonic behavior of the interpolation incorrect.

Extrapolation is not tenable using this interpolation model. See Figure 4.10.
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1-Dimensional MS Projection

p=1 e |Nterpolation
—&— Control Points

Figure 4.11. Microsphere Projection, p=1 interpolation of simple smooth data set.

Microsphere Projection with p=1. Setting p=1, Microsphere Projection becomes

the 1-dimensional equivalent of piecewise linear interpolation. This model satisfies all of

our main criteria; however its non-differentiability may cause problems. See Figure 4.11.
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1-Dimensional MS Projection
p=2

e |Nterpolation

—&— Control Points
/9/ \

- First Derivative
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Figure 4.12. Microsphere Projection, p=2 interpolation of simple smooth data set.

Microsphere Projection with p=2. Setting p=2 provides the differentiability that
is lacking with p=1. The graph could be described as a smoothed version of nearest
neighbor interpolation. This method satisfies our criteria of differentiability and

preservation of monotonic behavior. See Figure 4.12.

4.1.3 One-Dimensional Interpolation: Analysis

One-dimensional tests were conducted using the grayscale images in Figure 4.13.
Each image was dissected row-by-row, a single row of pixels representing a set of 1-
dimensional data. See Figure 4.14. From a row of pixels, a random collection of pixels
were sampled on a percentage basis. These ‘known’ values formed the basis of the
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interpolation functions. At this point, a single pixel was randomly selected and the
interpolated value was compared against the actual value. This process was repeated

1000 times for each pixel row in each image for a total test size of 3642000.

(w:500 h:316)

(w:599 h:480)

Sl

(w:377 h:450)

(w:600 h:465)

(w:302 h:307)

(w:299 h:312)

(w:401 h:327)

(w216 h:273)

Figure 4.13. Grayscale images used in 1-Dimensional and 2-Dimensional testing.
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Figure 4.14. Example of how 1-dimensional testing data was extracted from existing

grayscale images.

The 1-dimensional interpolation analysis was conducted in two phases. The first
phase used strict interpolation, meaning that the values tested were strictly limited to the
range of the randomly sampled pixels. The second phase did not restrict the testing to the
range of the sampled pixels. Instead it tested the accuracy of the interpolation method
along the entire length of the sample space. See Figure 4.15 for details. All error values

were calculated by using relative Root Mean Squared error as written in Formula 3.1
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3.1

ERrms =

(Vmax - Vmin)

Definition of relative Root-Mean-Squared (RMS) error. k is the interpolation value, v is

the actual value, N is the number of interpolation values that have been gathered.

One Pixel Row

Strict Interpolation {FE {F A ThF e 41

General Interpolation sl Wl Wl Tl oAb Wi ssssssssts

Pixel 0 Pixel N
[ Randomly Sampled Pixel

Testing Region
Figure 4.15. Differences between one-dimensional testing sets. Strict Interpolation tests
strictly on the inclusive set of randomly sampled pixels. General Interpolation includes a

small amount of extrapolation on the ends of the set.

Table 4.1. Relative RMS error of various 1-dimensional interpolation methods using
Strict Interpolation.

Percentage of Data “Known” to the Algorithm
Method of Interpolation 2.5% 5% 10% 25% 50% 90%
Microsphere Projection, p=2  0.1731  0.1429 0.1135 0.0828 0.0651 0.0541
Microsphere Projection, p=1

(piecewise linear) 0.1688 0.1392 0.1105 0.0806 0.0635 0.0531
Piecewise Cubic Spline 0.1744 0.1438 0.1137 0.0825 0.0644 0.0533
Shepard's Method, p=2

(inverse distance) 0.1698 0.1410 0.1136 0.0848 0.0689 0.0601
Nearest Neighbor 0.1906 0.1592 0.1281 0.0951 0.0769 0.0668
Average Value 0.2186 0.2155 0.2134 0.2120 0.2117 0.2111
N (number of samples) 3.642e6 3.642e6 3.642e6 1.821e6 7.284e5 3.642e5
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Table 4.2. Relative RMS error of various 1-dimensional interpolation methods using
General Interpolation.

Percentage of Data “Known” to the Algorithm
Method of Interpolation 2.5% 5% 10% 25% 50% 90%
Microsphere Projection, p=2  0.1913 0.1503 0.1167 0.0838 0.0660 0.0545
Microsphere Projection, p=1

(piecewise linear) 0.1882 0.1472 0.1139 0.0817 0.0645 0.0535
Piecewise Cubic Spline 3733 696.1 70.33 2.830 0.3406 0.0584
Shepard's Method, p=2

(inverse distance) 0.1827 0.1464 0.1161 0.0857 0.0697 0.0606
Nearest Neighbor 0.2038 0.1640 0.1299 0.0957 0.0777 0.0675
Average Value 0.2240 0.2175 0.2142 0.2124 0.2118 0.2114
N (number of samples) 3.642e6 3.642e6 3.642e6 1.821e6 7.284e5 3.642e5

The data presented in Tables 4.1 and 4.2 were gathered in order to present a more
useful picture of how accurate Microsphere Projection is compared to other one-
dimensional interpolation techniques.

Included in the list of tested techniques is ‘Average Value’; this method
interpolates any value as being the average of all of the values of the sample points. It is
not a serious interpolation technique; however it is useful to form a baseline opinion of
performance.

Based on the data in Table 4.1, Microsphere Projection is able to perform on par
with Piecewise Cubic Splines. One caveat is that the data these tests are based on is non-
functional, meaning that the data points were not derived from any known function; they
were sampled from photographs. If the sample points are known to be functionally-based
and the underlying function fairly smooth (or a smooth grey-scale picture), it is expected

that the Piecewise Cubic Spline would be able to interpolate with greater precision.
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Because of Piecewise Cubic Spline’s simplicity and continuous second-
differentiability, it is tempting to extend the spline functions into the realms of
extrapolation. The data presented in Table 4.2 demonstrates that this is wholly
undesirable. The extremely poor results generated by piecewise cubic splines in Table
4.2 can be justified by understanding that in cases where only a small number of points
are sampled, there exists the chance of running into a situation like that depicted in Figure
4.16. Since the test is run 3.6 million times to generate each of the numbers in table 4.2,
situations such as Figure 4.16 are bound to happen, and when they do, they skew the
root-mean-squared error significantly. If a differentiable function is needed that can
extrapolate as well as interpolate, Microsphere Projection works well in these 1-

dimensional test cases.

Figure 4.16. Depiction of problem when using cubic splines to perform even

small amounts of extrapolation.
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4.2 Two-Dimensional Interpolation
4.2.1 Random Control Point Locations — Case Study

For this experiment, a simple 100x100 pixel image was chosen to be interpolated.
From the image, 50 random sample points were chosen (0.5% of original image). Using
the values of the sample points, various interpolation methods were selected. The results

of these interpolation methods are displayed in Figures 4.17-4.23.

Figure 4.17. Study of random control point locations: original image with and without

sample points highlighted.

This image was chosen because it provides:
e An obvious shape we wish to see reproduced by an interpolation function.
e Distinct and varying brightness in different areas of the picture.
e An interesting variation in color (depending on how this document was printed, it

may be in color or not).
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Figure 4.18. Study of random control point locations: interpolation using Nearest

Neighbor.

Nearest Neighbor interpolation is not very accurate, however while viewing the
following series of interpolations it should be noted that the equivalent of this
interpolation is generated by both Shepard’s Method and Microsphere Projection as

p—o. See Figure 4.18.

Figure 4.19. Study of random control point locations: interpolation using Shepard’s

Method (inverse distance weighting), p=2.



It turns out in this example that the value of p=2 is perhaps less than ideal.
However, since the general case of Shepard’s Method suggests p=2 and a typical user
will have little information on how to change the value to improve their results, this

should be accepted as a typical interpolation case. See Figure 4.19.

Figure 4.20. Study of random control point locations: interpolation using Microsphere

Projection, p=1.

Microsphere Projection with p=1 provides a reasonable interpolation. Setting the
p-value very low allows points that are farther away to influence the interpolation values
to a larger degree. The resultant image is one which looks a little bit ‘smeared’. The
non-differentiability when p=1 is also noticeable in that the sample points are extremely

pronounced in the interpolation image. See Figure 4.20.
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Figure 4.21. Study of random control point locations: interpolation using Microsphere

Projection, p=2.

Using Microsphere Projection with p=2 provides a very appealing result. The
‘smearing’ effect generated when p=1 is greatly reduced with p=2. With the loss of the
smearing, we are able to distinguish some shapes in the object a little more clearly.
Arguably, this seems to produce the best interpolation of any of the algorithms. See

Figure 4.21.

Figure 4.22. Study of random control point locations: Interpolation using Thin-Plate

Spline method.



Thin-Plate Spline interpolation is a fairly common technique for interpolating
non-uniform two-dimensional data. This method produces a good interpolation, however
certain aspects of the interpolation are lacking. Besides some extreme interpolated values
(which will be addressed in the next few paragraphs), the only problem with this
interpolation is its inherent ‘roundness’. Because it is based on a radial function, the
interpolation around the data points is extremely rounded, and does not necessarily

connote the desired shapes of the original image.

Figure 4.23. Study of random control point locations: Interpolation using Thin-Plate
Spline method. The areas which generated non-real values (either the R, G, or B

component of the pixel interpolated >255 or <0) are highlighted in red.

One other consideration should be made when choosing to use a radial basis
function (RBF) interpolation such as Thin-Plate Spline: That of unintended interpolation
to non-real values. Unfortunately the high degree of smoothness that these functions

enjoy comes at the cost of the resulting interpolation being beyond the range of the
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original sampled values (see Figure 4.23). In some cases this is a reasonable result,
however in many cases (including those involving image interpolation), they can cause
issues.

The simplest mechanism to avoid non-real values is to truncate the values when
they surpass the ranges deemed acceptable. This mechanism was employed in Figure
4.22. Though it works, it defeats the purpose of using these interpolation techniques in
the first place — their high smoothness and differentiability. Truncating the values

renders the interpolation C° (non-differentiable).

4.2.2 Controlled Selection of Sample Points Located in Area of Interest — Case Study

This experiment differs slightly from the previous in that the sample points
selected are not wholly random. The image and sample points were chosen to represent
the concept of ‘area of interest’. In many cases, the end user will desire a great degree of
information regarding only a certain area of the full interpolation space, and thus will
take a large number of sample points in that area. It is the responsibility of the
interpolation function to handle this case without producing aberrant values in the areas
where there are few or no sample points.

A grayscale elevation map of the New York coastline was chosen (w:401, h:327).
150 random pixels were chosen (0.11% of the original image) as sample points with the
condition that they must be within 10 pixels of the shoreline. The restriction to within 10
pixels of the shoreline represents our ‘area of interest’ — anyone who would be interested
in elevation data would not be surveying the elevation of the Atlantic Ocean. The results

of interpolating this data with a variety of algorithms is displayed in Figures 4.24-4.29.
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Figure 4.24. Study of controlled selection of control point locations: Original Image with

and without sample points highlighted.

-
®

Figure 4.25. Study of controlled selection of control point locations: interpolation using

Nearest Neighbor.

Nearest Neighbor is included because the equivalent of this interpolation is

generated by both Shepard’s Method and Microsphere Projection as p — o. See Figure

4.25.
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Figure 4.26. Study of restricted control point locations: interpolation using Microsphere

Projection, p=1.

Using Microsphere Projection with p=1, we are able to recreate the coastline
fairly well. The only visual miscues generated by this interpolation are at the locations of
the sample points where the non-differentiability (non-smoothness) is noticeable. See

Figure 4.26.

Figure 4.27. Study of restricted control point locations: interpolation using Microsphere

Projection, p=2.



Using a propagation of influence power of 2, we are able to create an
interpolation that is smoother than p=1 and generates less ‘smearing’ around the edges of

the coastline. See Figure 4.27.

Figure 4.28. Study of restricted control point locations: interpolation using Thin-Plate

Spline method.

Thin-Plate Spline produces a very smooth interpolation in comparison to the
others shown. Visually, we can see the cost of using a Radial Basis Function (RBF)
interpolation when looking at the interpolation of the long thin island in the original
image(see Figure 4.28). Where Micosphere Interpolation was able to preserve the
narrowness of the island, RBF-based interpolations such as TPS are more apt to produce
a more ‘rounded’ look. This distorts the image slightly, making the island seem wider
than it is in the original. Also, though smooth, TPS’s smoothness (high differentiability)

comes at a high cost, as can be seen in Figure 4.29.
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Figure 4.29. Study of restricted control point locations: interpolation using Thin-Plate
Spline method. The areas which generated non-real values (the pixel was interpolated as

>255 or <0) are highlighted in shades of red.

4.2.3 Two-Dimensional Interpolation: Analysis

Two-dimensional tests were conducted using the grayscale images displayed in
Figure 4.13. For each image, a random set of sample pixels were chosen. Following this,
100 random pixels were selected and compared against their interpolated values. This
procedure was performed on each picture 100 times for a total test size of 100000
between all ten pictures.

The 2-dimensional interpolation analysis was conducted in two phases. The first
phase used strict interpolation, meaning that the values tested were strictly limited to the
convex hull formed by the sample pixels. The second phase did not restrict the testing to
the convex hull; instead, pixels from the entire image were tested for accuracy. See

Figure 4.30 for details.
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Strict Interpolation
Limited to
Convex Hull

General Interpolation
Limited to
Original Data Range

Figure 4.30. Differences between two-dimensional testing sets. Strict Interpolation tests

strictly within the convex hull of sampled pixels. General Interpolation includes all

pixels from the original data range.

Table 4.3. Relative RMS error of various two-dimensional interpolation methods using

Strict Interpolation.

Number of Points Sampled

Method of Interpolation 10 20 50 100 500 1000
Microsphere Projection,

p=2 0.251 0.231 0.201 0.178 0.133 0.116
Microsphere Projection,

p=1 (2D version of

piecewise linear) 0.242 0.222 0.193 0.172 0.128 0.112
Thin-Plate Spline 0.269 0.248 0.214 0.189 0.138 0.121
Shepard's Method, p=2

(inverse distance) 0.241 0.222 0.197 0.180 0.150 0.140
Nearest Neighbor 0.289 0.268 0.234 0.210 0.159 0.140
Average Value 0.265 0.259 0.255 0.251 0.250 0.249
N (number of samples) 1.0e5 1.0e5 1.0e5 1.0e5 1.0e5 1.0e5
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Table 4.4. Relative RMS error of various two-dimensional interpolation methods using
General Interpolation (includes areas outside convex hull).

Number of Points Sampled

Method of Interpolation 10 20 50 100 500 1000
Microsphere Projection,
p=2 0.258 0.234 0.204 0.180 0.133 0.116

Microsphere Projection,
p=1 (2D version of

piecewise linear) 0.247 0.225 0.196 0.173 0.129 0.112
Thin-Plate Spline 0.320 0.273 0.226 0.195 0.140 0.122
Shepard’'s Method, p=2

(inverse distance) 0.242 0.221 0.197 0.181 0.151 0.139
Nearest Neighbor 0.292 0.268 0.237 0.211 0.160 0.141
Average Value 0.260 0.254 0.250 0.250 0.249 0.248
N (number of samples) 1.0e5 1.0e5 1.0e5 1.0e5 1.0e5 1.0e5
Convex Hull Coverage 43.6% 62.3% 80.0% 88.2% 96.6% 98.1%

Looking at the data gathered from ‘strict interpolation’, we can see that
Microsphere Projection outperforms TPS for our test cases. The difference in
performance is not large, however it is more significant and consistently larger than our
error margin.

In the ‘general interpolation’ tests we see a slightly more profound difference
between the values. While Microsphere Projection is slightly penalized by having some
testing points outside the convex hull of the sample points, the penalty to TPS is far more
significant. As the number of sample points grows larger, the convex hull approaches the
size of the entire sample space, and thus the values in the ‘1000’ column of both charts
are very similar.

One interesting and unanticipated result of these tests is the general dominance of

Microsphere Projection with p=1. Though having the downside of non-differentiability,
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using p=1 seems to provide a clear advantage over p=2 as far as accuracy is concerned.
This can be justified by considering that the data we are modeling is non-functional, and
that p=1 is simply a multidimensional version of piecewise linear interpolation.

In all, Microsphere Projection displays a very strong performance when compared
to the standard two-dimensional interpolation technique of Thin-Plate Spline. The only
extra considerations might be that the data used for evaluation was not functionally
based, and was limited to a range (0-255). Now, this should not be a problem for a robust
interpolation technique, however TPS should not be written off entirely. TPS has been
shown to perform admirably on smoother functionally based data sets. Therefore, if the
underlying data were functionally based and fairly smooth, it might make more sense to

use TPS rather than Microsphere Projection.

4.3 Three-Dimensional Interpolation

To experiment with Microsphere Projection in three dimensions, we chose to
interpolate based on data gathered from soil pollution readings at various locations and
depths throughout an industrial complex. The data gathered is unfortunately of a form
different from our previous two dimensionality tests in that it is non-uniform. In the
previous two sections we have been able to test against known uniform distributions of
one and two dimensional data. The fact that the soil pollution readings are in non-
uniform locations will force us to modify the testing mechanism slightly.

The data was gathered by drilling several bore wholes into the ground and
measuring pollution levels in parts-per-million (PPM). Thus, the data is organized in

linear sets of samples of varying depths, each originating from the surface (top) of the
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data. The majority of the pollution sampled was at ground level or slightly below.
Samples taken at lower depths nearly all returned 0 PPM. Based on this understanding,
we should expect a correct interpolation to display ‘hotspots’ of pollution near the top,
and the lowest parts of the graph to be at or extremely close to 0 PPM. Figures 4.31-4.36

display our results of interpolating this data set.

«—
100% below sample range.
(very negative)

+—
Within 0.01% of minimum

value of sample range (zero)
Range of

sampled data

< .
Maximum value of sample

range (very large)

100% beyond sample range
(inconceivably large)

- <4— Control Point

Figure 4.31. Legend for use in figures 4.32-4.36.
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Figure 4.32. Front-top and front-bottom views of Nearest Neighbor interpolation, with

one quadrant cut-away.

Nearest Neighbor interpolation works mildly well with this data set, however due
to its inability to take distance to sample points into account and its non-differentiability,

it can not bet trusted to generate a reasonable interpolation. See Figure 4.32.

Figure 4.33. Front-top and front-bottom views of Shepard’s Method p=2 interpolation,

with one quadrant cut-away.

56



Using inverse-distance (Shepard’s Method) for interpolating this data set, we can
see reasonable results near the center of mass of the sample points; however certain
aspects of the interpolation are blatantly incorrect. The most notable problem with using
Shepard’s method in this situation is that as we move farther away from the sample
points (move farther down into the ground), the interpolated value approaches the
average value of all of our samples (non-zero). This model would seem to imply that no
matter how far down we test, there will always be an ‘ambient’ pollution. Our empirical
data and our basic intuition do not support this because our deepest sample points all
registered 0 PPM. This behavior is a major drawback of using Shepard’s method. See

Figure 4.33.

Figure 4.34. Front-top and front-bottom views of Multiquadric interpolation, with one

quadrant cut-away.

Using Multiquadric interpolation, we are able to generate reasonable results for

interpolations contained within the convex hull, though interpolating much beyond the
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convex hull yields unrealistic results. Most notable of the unrealistic results are the large
negative values displayed in figure 4.34 as a blue section at the bottom of the bounding
box. This result is incorrect for two reasons, first it is non-zero, and second, it is not
physically possible. Negative PPM does not make any physical sense. If only for these

two reasons, this interpolation method is a complete failure on this data set.

Figure 4.35. Front-top and front-bottom views of Volume Spline interpolation, with one

quadrant cut-away.

Using volume spline interpolation yields a whole slew of incorrect and unrealistic
results when applied to this data set. Though volume spline interpolation may produce
reasonable results within the convex hull, the bounding box encompasses far greater area,
and requires a good amount of extrapolation. Volume spline interpolation fails miserably
at this extrapolation as we can see demonstrated in the huge areas of negative PPM (not
physically possible), and a huge area of pollution at depths beyond where sensors had

recorded none. See Figure 4.35.
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Figure 4.36. Front-top and front-bottom views of Microsphere Projection p=2, with one

quadrant cut-away.

Visually, Microsphere Projection almost perfectly reproduces the results which
we would expect from this data: the ‘hotspots’ near the surface seem to be modeled well,
the interpolation approaches 0 PPM as depth increases, and there are no negative
interpolated values. The only potential problem with this data set is almost a complete
lack of data points in the front-right. This lack of data points makes interpolation
particularly difficult in this area of the graph, and Microsphere projection interpolates
some of the very deep points in this area to have very small (non-zero) pollution as can
be seen represented as a large green patch in figure 4.36. This is undesirable; however
the behavior in this region of the graph is far better than any of the other interpolation

methods.
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Table 4.5. Small sample of the soil pollution data. X-Y ground coordinates are listed

first, Z depth coordinate listed third, and PPM of pollution is listed fourth.

8200.590551
8188.877953
8070.439633
8070.439633
8041.141732
8041.141732
8041.141732
8030.118110
8030.118110
8030.118110
8030.118110
8030.118110
8030.118110
8106.725722
8106.725722
7982.939633
7982.939633
7943.077428
7943.077428
7943.077428
7943.077428
7943.077428
7943.077428
7966.141732
7966.141732
7966.141732
7966.141732
7966.141732

7234.219160
7167.158793
7322.736220
7322.736220
7277.723097
7277.723097
7277.723097
7271.227034
7271.227034
7271.227034
7271.227034
7271.227034
7271.227034
7291.797900
7291.797900
7274.409449
7274.409449
7192.814961
7192.814961
7192.814961
7192.814961
7192.814961
7192.814961
7237.762467
7237.762467
7237.762467
7237.762467
7237.762467

-0.050000
-0.050000
-1.000000
-5.000000
-1.000000
-5.000000
-20.000000
-5.000000
-10.000000
-15.000000
-20.000000
-25.000000
-30.000000
-2.000000
-5.000000
-5.000000
-1.000000
-5.000000
-30.000000
-1.000000
-10.000000
-20.000000
-45.000000
-10.000000
-15.000000
-20.000000
-30.000000
-35.000000

790.000000
8190.000000
2.000000
2.000000
3520.000000
2.000000
2.000000
42400.000000
38500.000000
29300.000000
18300.000000
5500.000000
1.000000
3490.000000
2.000000
1.000000
2030.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
13500.000000
4380.000000
943.000000
1.000000
0.000000

To test our algorithms against this data set, it was decided to use the single-point-

removal test for modeling error. This test is conducted by removing a single point from

the data set, and then comparing the interpolated value to the real value for the removed

point. In our case, this process was conducted for each of the 145 points in the original
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dataset (a small section of this data set is shown in table 4.5). The results of this

procedure are located in Table 4.6.

Table 4.6. Relative RMS error of various three-dimensional interpolation methods using

single-point-removal testing when applied to pollution data.

Method of Interpolation Relative RMS Error
Microsphere Projection, p=2 0.080
Microsphere Projection, p=1 (piecewise linear) 0.081
Volume Spline 0.093
Multiquadric, r=1 0.077
Shepard's Method, p=2 (inverse distance) 0.100
Nearest Neighbor 0.110
Average Value 0.168

Because of the low size of N (145) and the non-uniformity of the source data, the
results of the error rates presented in Table 4.6 can be debated, however it is clear that
Microsphere Projection is at the very least able to provide similar error rates to that of

Volume Spline and Multiquadric interpolation.

4.4 Hyper-Dimensional Interpolation

Interpolating data in higher dimensions poses certain difficulties; the chief
difficulty to be addressed in this section is that of ‘infinite corners’. We have seen in
Tables 4.2, and 4.4 that spline interpolations falter when they are asked to extrapolate
(extrapolation being defined as guessing at values beyond the convex hull of sample
points). Thankfully, the bounding box around the sample points is very similar to the

convex hull in lower dimensions; in fact when d=1, the bounding box and convex hulls
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are the same. However, in higher dimensions things can become strange. See Figure

4.37 for an illustration of the difference between the convex hull and the bounding box.

Convex Hull Bounding Box

Figure 4.37. Illustration of ‘Convex Hull’ and ‘Bounding Box’.

Most applications of non-uniform interpolation involve mapping a set of scattered
data points on to a regular grid. This grid often takes the form of the bounding box
surrounding the sample points such as in figures 4.32-4.36. Our problem arises in that in
higher dimensions, the bounding box is often a great deal larger than the convex hull. In
fact, the convex hull may represent only a very small fraction of the bounding box in very

high dimensions. See Formula 4.1 for a simple definition of the relationship. The extra
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space beyond the convex hull means that in order to fill out the regular grid in higher

dimensions, we must not only be able to interpolate, but extrapolate as well.

o]
b

bb! is the d-dimensional bounding box
ch? is the d-dimensional convex hull
|| X || is the volume of space enclosed by x

as d—oo 4.1

At present, the RBF-based spline interpolations are inadequate at handling
extrapolation beyond the convex hull as can be seen by the differences in Figures 4.34
and 4.35 and Tables 4.3 and 4.4. Looking at these tables, the Microsphere Projection
function seems hardly disturbed when handling data outside the convex hull. Based on
this information, it seems that Microsphere Projection is well-suited to high-
dimensionality interpolation, whereas many of the other most popular interpolation

techniques including RBF-based techniques are not.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

In this thesis we have presented a new algorithm for interpolating sparse data:
Microsphere Projection. This algorithm is based on the physical structure of an
infinitesimally small sphere. Using this structure we are able to interpolate based on the
‘illumination’ of nearby sample points.

Our analysis has shown that Microsphere Projection is a viable interpolation
technique, and in the test cases conducted in this thesis surpasses the abilities of some
existing methods. In one dimension, MS interpolation with p=2 proves to be almost as
accurate as piecewise cubic spline interpolation, with p=1 (the non-differentiable case),
the accuracy surpasses cubic splines. See Table 4.2. In two dimensions, the accuracy of
MS interpolation easily outperforms thin-plate spline interpolation; and in three
dimensions its performance is at least on par with existing techniques. See Tables 4.3,
4.4, and 4.6. In hyper dimensions it is expected that MS interpolation will be even more
useful due to its stable extrapolation properties.

Future work should include more extensive three-dimensional testing, along with
comparisons between a wider range of alternative interpolation functions including
Volume MMN Networks [5] and Bézier Surfaces [2]. All tests in 1D and 2D were

performed based on a set of grayscale images; it would be beneficial to test the algorithm
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against more varieties of one and two-dimensional data. Hyper-dimensional testing
would be interesting, though the availability of original-source hyper-dimensional data is
fairly limited.

Microsphere projection is able to provide a new and innovative interpolation
method which is differentiable, preserves monotonic behavior, generates very low error
rates, and is applicable in any dimensionality. These characteristics along with others
discussed in this paper make Microsphere Projection a unique and robust tool with many

applications.
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APPENDIX

CRITICAL SOURCE CODE

/***********************************************************************

main.cpp
***********************************************************************/

#include <iostream>
#include <fstream>

#include "all sparse interpolators.h"
#include "bitmap.h"

#include "testfunctions.h"

#include "random.h"

#include "imageManip.h"

#include "opengl code.h"

void Test1D ();

void Test2D ();

void Test3D ();

void Makelmage ();

void Test();

int main (int argc, char **argv)

{
std::cout << "working...";
/[Test1D(); // perform 1-d testing and output error rate results
//Test2D(); // perform 2-d testing and output error rate results
//Test3D(); // perform 3-d testing and output error rate results
//Makelmage(); // create 2-d images for viewing
Test3D 2(argc, argv); // create 3-d images for viewing using openGL
std::cout << "\n\npress any character & enter to exit.\n";
char hold = 0;
std::cin >> hold;

}
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void Test()

{
bitmapHeader img(100,100);

point3D pts[16] =

{
point3D(0,0,0),
point3D(33,0,0),
point3D(67,0,0),
point3D(100,0,0),
point3D(0,33,0),
point3D(33,33,0),
point3D(67,33,0),
point3D(100,33,0),
point3D(0,67,0),
point3D(33,67,0),
point3D(67,67,0),
point3D(100,67,0),
point3D(0,100,0),
point3D(33,100,0),
point3D(67,100,0),
point3D(100,100,0)

}5

double valsR[16] =

{
255,0,0,255,
0,255,255,0,
0,255,255.,0,
255,0,0,255

)5

double valsG[16] =

{
0,255,0,0,
0,255,255,255,
255,255,255,0,
0,0,255,0

35

double valsB[16] =
{
0,0,255,0,
255,255,255,0,
0,255,255,255,



0,255,0,0
¥

spherical interpolator iR, i1G, iB;

iR.RegisterSparseData(pts, valsR, 16);
1G.RegisterSparseData(pts, valsG, 16);
iB.RegisterSparseData(pts, valsB, 16);

//for (int i=0;1<100;i++)

/I for (int j=0;j<100;j++)

/4

/! int r = iR.InterpolatePoint(point3D(i,j,0),2,true);
// int g = 1G.InterpolatePoint(point3D(i,j,0),2,true);
/! int b = iB.InterpolatePoint(point3D(i,,0),2,true);
// img.setVals(i,],r,g,b);

I}

//img.SaveFile("output.bmp");

bitmapHeader img2(4,4);
img2.setVals(0,0,255,0,0);
img2.setVals(1,0,0,255,0);
img2.setVals(2,0,0,0,255);
img2.setVals(3,0,255,0,0);
img2.setVals(0,1,0,0,255);
img2.setVals(1,1,255,255,255);
img2.setVals(2,1,255,255,255);
img2.setVals(3,1,0,255,0);
img2.setVals(0,2,0,255,0);
img2.setVals(1,2,255,255,255);
img2.setVals(2,2,255,255,255);
img2.setVals(3,2,0,0,255);
img2.setVals(0,3,255,0,0);
img2.setVals(1,3,0,0,255);
img2.setVals(2,3,0,255,0);
img2.setVals(3,3,255,0,0);

bitmapHeader img3(100,100);
resampleBicubicBSpline(img3, img2);

img2.SaveFile("output2.bmp");
img3.SaveFile("output3.bmp");
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void Makelmage ()
{

bitmapHeader img(1,1);

img.LoadFile("2D_7.bmp");

//spherical_interpolator interpolatorl, interpolator2, interpolator3;
//mearestneighbor interpolator interpolatorl, interpolator2, interpolator3;
//inversedistance_interpolator interpolatorl, interpolator2, interpolator3;
thinplatespline interpolator interpolatorl, interpolator2, interpolator3;

#define KNOWN_COUNT 10 // number or known pixels
point3D knownPointsf KNOWN_ COUNT];

double knownValuesRIKNOWN_ COUNT];

double knownValuesG[IKNOWN_COUNTT;

double knownValuesB[KNOWN_ COUNT];

for (int i=0; 1 < KNOWN_COUNT; i++)

{
int x=0,y=0;
bool sea;
do
{
x = knownPoints[1].x = rand()%img.width;
y = knownPoints[1].y = rand()%img.height;
knownValuesR[i] = img.getVal(x,y,RR);
knownValuesG[i] = img.getVal(x,y,GG);
knownValuesB[i] = img.getVal(x,y,BB);
sea = true;
for (int xxx = x-15; xxx<x+15; xxx++)
for (int yyy = y-15;yyy<y+15;yyy++)
if (img.getVal(xxx,yyy,RR) > 10) sea = false;
}
while (sea);
}

interpolator1.RegisterSparseData(knownPoints, knownValuesR, KNOWN_ COUNT);
interpolator2.RegisterSparseData(knownPoints, knownValuesG, KNOWN_ COUNT);
interpolator3.RegisterSparseData(knownPoints, knownValuesB, KNOWN_COUNT);

img. Whitewash();
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for (int x=0;x<img.width;x++)

{

cout << "col " << x << "\n";
for (int y=0;y<img.height;y++)

{

point3D pt(x,y,0);
int r=0,g=0,b=0;

for (int i=0; 1 < KNOWN_COUNT; i++)
if (pt == knownPoints[1i])

{

/limg.setVals(x,y,255,255,255);
/img.setVals(x-1,y-1,0,0,0);
/limg.setVals(x,y-1,0,0,0);
/img.setVals(x+1,y-1,0,0,0);
/limg.setVals(x-1,y,0,0,0);
/img.setVals(x+1,y,0,0,0);
/img.setVals(x-1,y+1,0,0,0);
/img.setVals(x,y+1,0,0,0);
//img.setVals(x+1,y+1,0,0,0);
/img.setVals(x,y,255,255,255);
/img.setVals(x-1,y-1,255,255,255);
/img.setVals(x,y-1,255,255,255);
//img.setVals(x+1,y-1,255,255,255);
/img.setVals(x-1,y,255,255,255);
/limg.setVals(x+1,y,255,255,255);
//img.setVals(x-1,y+1,255,255,255);
//img.setVals(x,y+1,255,255,255);
//img.setVals(x+1,y+1,255,255,255);
/img.setVals(x-2,y-2,0,0,0);
/limg.setVals(x-1,y-2,0,0,0);
/limg.setVals(x,y-2,0,0,0);
//img.setVals(x+1,y-2,0,0,0);
/img.setVals(x+2,y-2,0,0,0);
/limg.setVals(x-2,y-1,0,0,0);
/limg.setVals(x+2,y-1,0,0,0);
/limg.setVals(x-2,y,0,0,0);
/img.setVals(x+2,y,0,0,0);
/limg.setVals(x-2,y+1,0,0,0);
/img.setVals(x+2,y+1,0,0,0);
/limg.setVals(x-2,y+2,0,0,0);
/limg.setVals(x-1,y+2,0,0,0);
/limg.setVals(x,y+2,0,0,0);
/limg.setVals(x+1,y+2,0,0,0);
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/img.setVals(x+2,y+2,0,0,0);
§

r=g=b = (int)(interpolatorl.InterpolatePoint(pt,20));
//g = (int)(interpolator2.InterpolatePoint(pt));
//b = (int)(interpolator3.InterpolatePoint(pt));
if(r<0|r>255]g<0]g>255|b<0]b>255)
{

Int min =r;

if (g <min) min = g;

if (b <min) min =b;

r =255; g=b=200+min;
}

r=1<0?0:r>25572551;
g = g<070:g>2557255:g;
b =b<0?0:b>2557255:b;
/limg.setVals(x,y,r,g,b);

//if (linterpolator1.InsideConvexHull 2D(pt))
if (pt.x < interpolatorl.minX() || pt.x > interpolatorl.maxX() || pt.y <

interpolatorl.minY() || pt.y > interpolator]l.maxY())
img.setVals(x,y,255,255,255);

else
img.setVals(x,y,0,0,0);
}

J

img.SaveFile("output.bmp");
}
void Test3D ()
{

MTRand r;
unsigned long tstart = time(0);
unsigned long tlast = 0;

nearestneighbor_interpolator nni;
inversedistance _interpolator invdi;
average interpolator avgi;
volumespline interpolator vsi;
multiquadric_interpolator mqj;
spherical interpolator lini;
spherical interpolator msi;
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double sum_error[7] = {0};
double sum_error_squared[7] = {0};
int error_count = 0;

std::ifstream fin ("DIESELO.txt", std::i0s::in);
#define DATASIZE 145

double vals[DATASIZE];
point3D locs|[ DATASIZE];

for (int i=0;i<DATASIZE; i++)
{
fin >> locs[1].x;
fin >> locs[i].y;
fin >> locs|[1].z;
fin >> vals][i];

}

for (int i=0;i<DATASIZE; i++)
{
if ((time(0) - tlast) > 4)
{
for (int k=0;k<7;k++)
cout << sqrt(sum_error squared[k]/error count) << "\n";
cout << error_count << "\n\n";
tlast = time(0);

}

double vals2[DATASIZE-1];
point3D locs2[DATASIZE-1];

for (int j=0;j<DATASIZE;j++)

{
if (j <i)
{
vals2[j] = vals[j];
locs2[j] = locs[j];
}
else if j > 1)
{
vals2[j-1] = vals[j];
locs2[j-1] = locs[j];
}
}
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nni.RegisterSparseData(locs2, vals2, DATASIZE-1);
invdi.RegisterSparseData(locs2, vals2, DATASIZE-1);
avgi.RegisterSparseData(locs2, vals2, DATASIZE-1);
vsi.RegisterSparseData(locs2, vals2, DATASIZE-1);
mgqi.RegisterSparseData(locs2, vals2, DATASIZE-1);
lini.RegisterSparseData(locs2, vals2, DATASIZE-1);
msi.RegisterSparseData(locs2, vals2, DATASIZE-1);

double actual = vals][i];
point3D testval = locs[i];
double ee;

ee = nni.InterpolatePoint(testval)-actual;
sum_error[0] += fabs(ee);
sum_error_squared[0] += ee*ee;

ee = invdi.InterpolatePoint(testval)-actual;
sum_error[ 1] += fabs(ee);
sum_error_squared[1] += ee*ee;

ee = avgi.InterpolatePoint(testval)-actual;
sum_error[2] += fabs(ee);
sum_error_squared[2] += ee*ee;

ee = vsi.InterpolatePoint(testval)-actual;
sum_error[3] += fabs(ee);
sum_error_squared[3] += ec*ee;

ee = mqi.InterpolatePoint(testval)-actual;
sum_error[4] += fabs(ee);
sum_error_squared[4] += ee*ee;

ee = lini.InterpolatePoint(testval, 1)-actual,
sum_error[5] += fabs(ee);
sum_error_squared[5] += ee*ee;

ee = msi.InterpolatePoint(testval, 2)-actual;
sum_error[6] += fabs(ee);

sum_error_squared[6] += ee*ee;

error_count++;

}

for (int k=0;k<7;k++)
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cout << sqrt(sum_error squared[k]/error count) << "\n";
cout << error_count << "\n";

}

void Test2D ()

{
MTRand r;
unsigned long tstart = time(0);
unsigned long tlast = 0;

nearestneighbor interpolator nni;
inversedistance interpolator invdi;
average interpolator avgi;
thinplatespline_interpolator tpsi;
spherical interpolator lini;
spherical interpolator msi;

//double PERCENTAGE = .1;
int NUMBER = 1000; //(int)(img.width*img.height*PERCENTAGE)
bool INCLUSIVE = false;

double sum_error[6] = {0};

double sum_error squared[6] = {0};
int error_count = 0;

int inside _count = 0;

for (int i=0; i<10; i++)
{
bitmapHeader img(1,1);
char fname[100] ="2D ";
char fnumber[100] ="";
itoa(i, fnumber, 100);
char extention [100] =".bmp";
img.LoadFile(strcat(strcat(fname, fnumber), extention));

point3D * coords = new point3D[NUMBER];
double * vals = new doublef NUMBER];

for (int 1=0;1<1000;1++)
{

//if ((time(0) - tlast) > 4)
if (false)
{
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for (int k=0;k<6;k++)

cout << sqrt(sum_error squared[k]/error count) << "\n";
cout << error_count << "\n\n";
tlast = time(0);

}
int count = 0;
do
{
point3D pt;

pt.x = (int)(r.rand() * img.width);
pt.y = (int)(r.rand() * img.height);
bool continuedo = false;
for (int k=0;k<count;k++)
if (pt==coords[k]) continuedo=true;
if (continuedo)
continue;
coords[count] = pt;
vals[count] = img.getVal(pt.x, pt.y, RR);
count++;

}
while (count < NUMBER);

nni.RegisterSparseData (coords, vals, NUMBER);
invdi.RegisterSparseData (coords, vals, NUMBER);
avgi.RegisterSparseData (coords, vals, NUMBER);
tpsi.RegisterSparseData (coords, vals, NUMBER);
lini.RegisterSparseData (coords, vals, NUMBER);
msi.RegisterSparseData (coords, vals, NUMBER);

for (int k=0;k<10;k++)
{
point3D testval;

bool canuse=false;
do

{
testval.x = (int)(r.rand()*img.width);
testval.y = (int)(r.rand()*img.height);

canuse = true;
if (INCLUSIVE && !nni.InsideConvexHull 2D(testval))

canuse = false;

for (int I=0;I<NUMBER;1++)
if (coords[1] == testval)
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canuse = false;

}

while (!canuse);

double actual = img.getVal(testval.x, testval.y, RR);
double ee;

ee = nni.InterpolatePoint(testval)-actual;
sum_error[4] += fabs(ee);
sum_error_squared[4] += ee*ee;

ee = invdi.InterpolatePoint(testval)-actual;
sum_error[3] += fabs(ee);
sum_error_squared[3] += ee*ee;

ee = avgi.InterpolatePoint(testval)-actual;
sum_error[5] += fabs(ee);
sum_error_squared[5] += ee*ee;

ee = tpsi.InterpolatePoint(testval, 100)-actual;
if (ee == ee && ee*ee < 1€20)
{

sum_error[2] += fabs(ee);
sum_error_squared[2] += ee*ee;

}

ee = lini.InterpolatePoint(testval, 1, true)-actual;
sum_error[ 1] += fabs(ee);
sum_error_squared[1] += ee*ee;

ee = msi.InterpolatePoint(testval, 2, true)-actual;
sum_error[0] += fabs(ee);
sum_error_squared[0] += ee*ee;

error_count++;

if (nni.InsideConvexHull 2D(testval))
inside_count++;

}

cout << NUMBER << "\n" << INCLUSIVE << "\n";
for (int k=0;k<6;k++)
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cout << sqrt(sum_error squared[k]/error count) << "\n";
cout << error_count << "\n";
cout << inside count << "\n\n";

}

void Test1D ()

{
MTRand r;
unsigned long tstart = time(0);
unsigned long tlast = 0;

nearestneighbor_interpolator nni;
inversedistance interpolator invdi;
average interpolator avgi,
cubicspline interpolator csi;
spherical interpolator lini;
spherical interpolator msi,

double PERCENTAGE =.9;
bool INCLUSIVE = false;

double sum_error[6] = {0};
double sum_error squared[6] = {0};
int error_count = 0;

for (int i=0; i<10; 1++)
{
bitmapHeader img(1,1);
char fname[100] ="2D ";
char fnumber[100] ="";
itoa(i, fnumber, 100);
char extention [100] =".bmp";
img.LoadFile(strcat(strcat(fname, fnumber), extention));

double * xvals = new double[(int)(img.width*PERCENTAGE)];
double * yvals = new double[(int)(img.width*PERCENTAGE)];
for (int j=0;j<(int)(img.width*PERCENTAGE);j++)

xvals[j] =j;
for (int j=0;j<img.height;j++)
{

for (int 1=0;1<10;1++)

{

78



if ((time(0) - tlast) > 4)
//if (false)
{
for (int k=0;k<6;k++)
cout << sqrt(sum_error_squared[k]/error count) << "\n";
cout << error_count << "\n\n";
tlast = time(0);

}

int count = 0;
do
{
int X = r.rand() * img.width;
bool continuedo = false;
for (int k=0;k<count;k++)
if (x==xvals[k]) continuedo = true;
if (continuedo) continue;
xvals[count] = x;
yvals[count] = img.getVal(x, j, RR);
count++;

}
while (count < (int)(img.width*PERCENTAGE));

nni.RegisterSparseData (xvals, yvals, (int)(img.width*PERCENTAGE));
invdi.RegisterSparseData (xvals, yvals,

(int)(img.width*PERCENTAGE));

nni.minX()));

avgi.RegisterSparseData (xvals, yvals, (int)(img.width*PERCENTAGE));
csi.RegisterSparseData (xvals, yvals, (int)(img.width*PERCENTAGE));
lini.RegisterSparseData (xvals, yvals, (int)(img.width*PERCENTAGE));
msi.RegisterSparseData (xvals, yvals, (int)(img.width*PERCENTAGE));

for (int k=0;k<10;k++)
{
point3D testval;
bool inuse=false;

do
{
if INCLUSIVE)
testval.x = (int)(nni.minX() + r.rand()*(nni.maxX()-
else

testval.x = (int)(r.rand()*img.width);

inuse=false;
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for (int 1=0;1<(int)(img.width*PERCENTAGE);1++)
if (xvals[l] == testval.x)
1nuse = true;

}

while (inuse);

double actual = img.getVal(testval.x, j, RR);
double ee;

ee = nni.InterpolatePoint(testval)-actual;
sum_error[0] += fabs(ee);
sum_error_squared[0] += ee*ee;

ee = invdi.InterpolatePoint(testval)-actual;
sum_error[ 1] += fabs(ee);
sum_error_squared[1] += ee*ee;

ee = avgi.InterpolatePoint(testval)-actual;
sum_error[2] += fabs(ee);
sum_error_squared[2] += ee*ee;

ee = csi.InterpolatePoint(testval)-actual;
if (ee == ee && ee*ee < 1€20)

{
//if (fabs(ee) > 1000)
//cs1.QuickPrint();
sum_error[3] += fabs(ee);
sum_error_squared[3] += ec*ee;
h

ee = lini.InterpolatePoint(testval, 1, true)-actual;
sum_error[4] += fabs(ee);
sum_error_squared[4] += ee*ee;

ee = msi.InterpolatePoint(testval, 2, true)-actual;
sum_error[5] += fabs(ee);

sum_error_squared[5] += ee*ee;

error_count++;
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cout << PERCENTAGE << "\n" << INCLUSIVE << "\n";
for (int k=0;k<6;k++)

cout << sqrt(sum_error squared[k]/error count) << ™\n";
cout << error_count << "\n\n";

}

/***********************************************************************

3Dgeomertry.h

***********************************************************************/

#ifndef D 3DGEOMETRY H
#define D 3DGEOMETRY H

#include <iostream>
#include <math.h>
using namespace std;

class point3D
{
public:

double x,y,z;

point3D (double xval = 0, double yval = 0, double zval = 0)
{

}

Set(xval, yval, zval);

point3D (const point3D & inp)
{

}

point3D (float* xyz)
{

}

point3D (double* xyz)
{

*this = inp;

Set(xyz[0], xyz[1], xyz[2]);

Set(xyz[0], xyz[1], xyz[2]);
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}

point3D & operator = (const point3D & 1)

{
X=1.X;
y=l.y;
z=1.7;
return *this;
}

const point3D operator + (const point3D & 1) const
{

point3D a;

a.x = xt1.x;

a.y = ytiy;

a.z=zt.z;

return a;

}

const point3D operator - (const point3D & 1) const

{
point3D a;
a.X = X-1.X;
ay =y-iy;
a.z = z-1.z;
return a;

}

const point3D operator - () const

{
point3D a;

ax = -x;
ay=-y;
a.z=-z,
return a;

}

bool operator == (const point3D & 1) const

{
return (x==1.X && y==1.y && z==1.z);
}

bool operator != (const point3D & 1) const

{

return !(*this == 1);
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}

void Set (double xval = 0, double yval = 0, double zval = 0)
{

x=xval,
y=yval;
z=zval;
}
double DistanceFromOrigin () const
{
return sqrt(x*x + y*y + z*z);
}
ostream & Print (ostream & out) const
{
Out << X << H’" << y << H,H << Z;
return out;
}
¥
class vector3D
{
public:

point3D p;

vector3D (double xval = 0, double yval = 0, double zval = 0)
{

Set(xval, yval, zval);

}
vector3D (const vector3D & inp)
{
*this = inp;
}
vector3D (const point3D & inp)
{
p = inp;
}

vector3D & operator = (const vector3D & 1)

{
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p=i.p;
return *this;

}
vector3D & operator = (const point3D & 1)
{
p=i;
}
const vector3D operator - () const
{
vector3D result;
result.p=-p;
return result;
}
const point3D operator + (const point3D & 1) const
{
point3D result;
result = 1+p;
return result;
}
const vector3D operator + (const vector3D & 1) const
{
vector3D result;
result = 1.p+p;
return result;
h

static double AngleBetweenVectors (const vector3D &v1, const vector3D &v2)
{
double cos = DotProduct(v1,v2) / (vl.Length()*v2.Length());
if (cos > 1) cos = 1; // (sometimes this ends up 1.000000001 if vectors are very
close)
return acos(cos);

}

static double AngleBetweenVectors (const vector3D &v1, const vector3D &v2,
double v1Length, double v2Length)
{
double cos = DotProduct(v1,v2) / (vlLength*v2Length);
if (cos > 1) cos = 1; // (sometimes this ends up 1.000000001 if vectors are very
close)
return acos(cos);
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}

static double CosAngleBetweenVectors (const vector3D &vl, const vector3D &v2)

{
double cos = DotProduct(v1,v2) / (vl.Length()*v2.Length());

if (cos> 1) cos =1;
return cos;

}

static double CosAngleBetweenVectors (const vector3D &v1, const vector3D &v2,
double v1Length, double v2Length)

{
double cos = DotProduct(v1,v2) / (vlLength*v2Length);
if (cos > 1) cos = 1; // (sometimes this ends up 1.000000001 if vectors are very
close)
return cos;
}
double AngleTo (const vector3D &v1) const
{
return AngleBetweenVectors(*this, v1);
}

static const vector3D & CrossProduct (const vector3D &v1, const vector3D &v2)
{

static vector3D result;

result.p.x = vl.p.x*v2.p.z - vl.p.z*v2.p.y;

result.p.y = v0.p.z*v2.p.x - vl.p.x*v2.p.z;

result.p.z=v1l.p.x*v2.p.y - vL.p.y*v2.p.x;

return result;

}

static double DotProduct (const vector3D &v1, const vector3D &v2)

{

return v0I.p.x*v2.p.x + v0l.p.y*v2.p.y + vl.p.z*v2.p.z;

}
double Length () const
{
return p.DistanceFromOrigin();
}

vector3D & Scale (double scalingFactor)
{

p.x *=scalingFactor;
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p.y *= scalingFactor;
p.z *= scalingFactor;
return *this;

}
vector3D & Normalize ()
{
Scale(1.0/Length());
return *this;
b
static const vector3D & Project (const vector3D &Projecting, const vector3D
&OnTo)
{

static vector3D result;

double ontolength = OnTo.Length();

result = OnTo;

result.Scale(DotProduct(Projecting, OnTo) / (ontolength*ontolength));
return result;

b
ostream & Print (ostream & out) const
{
return p.Print(out);
}

void Set (double xval = 0, double yval = 0, double zval = 0)
{

}

p-Set(xval, yval, zval);

}s

class plane3D

{
public:

/lax + by +cz+d=0;

//[a,b,c] is the normalized normal vector (n)

vector3D n; // normal (x*2+y”2+z"2=1 AT ALL TIMES) (invariant)
double d;

plane3D (double aval=0, double bval=0, double cval=0, double dval=0)
{

Set(aval, bval, cval, dval);
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}

plane3D (const point3D &pl, const point3D &p2, const point3D &p3)
{

}

Set(p1,p2,p3);

plane3D (const vector3D &normal, double dval)

{
b

Set(normal,dval);

plane3D (const vector3D &normal, const point3D p)

{
h

Set(normal,p);

plane3D (const plane3D & inp)
{

}

*this = inp;
plane3D & operator = (const plane3D & inp)
{
}

void Set (double aval=0, double bval=0, double cval=0, double dval=0)
{

Set(inp.n, inp.d);

n.Set(aval, bval, cval);
d=dval,;
}

void Set (const point3D &pl, const point3D &p2, const point3D &p3)
{
if (pl ==p2 || pl == p3 || p2 == p3) return;
vector3D n = vector3D::CrossProduct(p2-p1, p3-pl);
n.Normalize();
d = -(vector3D::DotProduct(n, p1));

}

void Set (const vector3D &normal, const double dval)

{

n = normal;
d = dval;
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}

void Set (const vector3D &normal, const point3D p)

{
n = normal;
d = -(vector3D::DotProduct(n, p));
b
double ClosestDistanceTo (const point3D & pt)
{
/*
returns positive if point is on the side of the normal,
returns negative if the point is on the opposite side of normal,
*/
return vector3D::DotProduct(n, pt) + d;
}

const point3D ClosestPointTo (const point3D &pt)

{

vector3D tmp = n;
double dist = ClosestDistanceTo(pt);
return pt - tmp.Scale(dist).p;

}
ostream & Print (ostream & out) const
{
n.Print(out);
Out << ",H;
out << d;
return out;
b
¥
#endif

/***********************************************************************

opengl code.h
***********************************************************************/

struct gl _cube

{

struct

{

88



float pos[3];

float col[3];
jver(8];
struct
{
unsigned int ver[4];
} quad[6];
bool isedge;
}s
struct gl _color
{
float rgb[3];
55

int Test3D 2(int argc, char **argv);

/***********************************************************************

opengl code.cpp

***********************************************************************/

#include <windows.h>
#include <gl\gl.h>
#include <gl\glu.h>
#include <gl\glut.h>

#include <iostream>
#include <fstream>

#include "all _sparse interpolators.h"
#include "random.h"

#include "3Dgeometry.h"

#include "opengl code.h"

#include "zpr.h"

static void redraw();

int main(int argc, char **argv);

void initCube(gl cube & cube, point3D center, double width, gl color * colors, double
xstretch=1, double ystretch=1, double zstretch=1, bool singleColor=false);

void remapColor (gl _color & ¢, double val);

void drawObjects();
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void performCalculations();

gl _cube *cubes;
int cubeCount;

gl cube *controlpts;
int controlptCount;

void performCalculations()

{

int resolution = 20;
cubeCount = resolution*resolution*resolution;
cubes = new gl cube[cubeCount];

std::ifstream fin ("DIESELO.txt", std::ios::in);
#define DATASIZE 145

double vals[DATASIZE];
point3D locs[ DATASIZE];
point3D locs2[DATASIZE];

for (int i=0;i<DATASIZE; i++)

{
fin >> locs[1].x;
fin >> locs[i].y;
fin >> locs[1].z;
fin >> vals][i];

}

//spherical_interpolator msi;
/Ivolumespline_interpolator msi;
//inversedistance_interpolator msi;
//multiquadric_interpolator msi,

nearestneighbor _interpolator msi;
msi.RegisterSparseData(locs, vals, DATASIZE-1);

double xdiam = (msi.maxX()-msi.minX())/resolution;
double ydiam = (msi.maxY()-msi.minY())/resolution;
double zdiam = (msi.maxZ()-msi.minZ())/resolution;
cubeCount = 0;
for (int x=0;x<resolution;x++)
{

cout << "row " << x << " complete\n";

for (int y=0;y<resolution;y++)

for (int z=0;z<resolution;z++)
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{
if (x<10&&y<10) continue;

gl color c[8];
c[0].rgb[0]=c[0].rgb[1]=c[0].rgb[2] =
(msi.InterpolatePoint(point3D(msi.minX()+(x)*xdiam,msi.minY ()+(y+1)*ydiam,
msi.minZ()+(z+1)*zdiam)) - msi.minV()) / (msi.maxV()-msi.minV());
c[1].rgb[0]=c[1].rgb[1]=c[1].rgb[2] =
(msi.InterpolatePoint(point3D(msi.minX()+(x+1)*xdiam,msi.minY ()+(y+1)*ydia
m,msi.minZ()+(z+1)*zdiam)) - msi.minV()) / (msi.maxV()-msi.minV());
c[2].rgb[0]=c[2].rgb[1]=c[2].rgb[2] =
(msi.InterpolatePoint(point3D(msi.minX()+(x+1)*xdiam,msi.minY ()+(y+1)*ydia
m,msi.minZ()+(z)*zdiam)) - msi.minV()) / (msi.maxV()-msi.minV());
c[3].rgb[0]=c[3].rgb[1]=c[3].rgb[2] =
(msi.InterpolatePoint(point3D(msi.minX()+(x)*xdiam,msi.minY ()+(y+1)*ydiam,
msi.minZ()+(z)*zdiam)) - msi.minV()) / (msi.maxV()-msi.minV());
c[4].rgb[0]=c[4].rgb[1]=c[4].rgb[2] =
(msi.InterpolatePoint(point3D(msi.minX()+(x)*xdiam,msi.minY ()+(y)*ydiam,ms
i.minZ()+(z+1)*zdiam)) - msi.minV()) / (msi.maxV()-msi.minV());
c[5].rgb[0]=c[5].rgb[1]=c[5].rgb[2] =
(msi.InterpolatePoint(point3D(msi.minX()+(x+1)*xdiam,msi.minY ()+(y)*ydiam,
msi.minZ()+(z+1)*zdiam)) - msi.minV()) / (msi.maxV()-msi.minV());
c[6].rgb[0]=c[6].rgb[1]=c[6].rgb[2] =
(msi.InterpolatePoint(point3D(msi.minX()+(x+1)*xdiam,msi.minY ()+(y)*ydiam,
msi.minZ()+(z)*zdiam)) - msi.minV()) / (msi.maxV()-msi.minV());
c[7].rgb[0]=c[7].rgb[1]=c[7].rgb[2] =
(msi.InterpolatePoint(point3D(msi.minX()+(x)*xdiam,msi.minY ()+(y)*ydiam,ms
i.minZ()+(z)*zdiam)) - msi.minV()) / (msi.maxV()-msi.minV());

remapColor(c[0], c[0
remapColor(c[1], ¢[1
remapColor(c[2], c[2
remapColor(c[3], ¢[3
remapColor(c[4], c[4
remapColor(c[5], c[5
remapColor(c[6], c[6
remapColor(c[7], c[7

1gb[0]);
1gb[0]);
1gb[0]);
1gb[0]);
1gb[0]);
1gb[0]);
1gb[0]);
1gb[0]);

double d = 20/resolution;

double xcenter = x*d + d/2;

double ycenter = y*d + d/2;

double zcenter = z*d + d/2;

initCube(cubes[cubeCount], point3D(xcenter, ycenter, zcenter),
20/resolution, c);

e e e e e e e e
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cubes[cubeCount].isedge = x==0||x==resolution-1||[y==0||y==resolution-
1||z==0||z==resolution-1;
cubeCount++;
}

}

controlptCount = DATASIZE,;

controlpts = new gl cube[controlptCount];

float boxcolor[3] = {1,0,1};

for (int i=0;i<controlptCount;i++)

{
gl color c;
c.rgb[0] = 1; c.rgb[1]=0; c.rgb[2] = 1;
point3D pt;
pt.x = 20*(locs[1].x-msi.minX())/(msi.maxX()-msi.minX());
pt.y = 20*(locs[i].y-msi.minY())/(msi.max Y ()-msi.minY());
pt.z = 20*(locs[1].z-msi.minZ())/(msi.maxZ()-msi.minZ());
initCube(controlpts[i], pt, .25, &c,1,1,1,true);

}

void remapColor (gl color & c, double val)
{
if (val <0)
{
c.rgb[0] = 0;
c.rgb[1] = .5+val*3;
c.rgb[2] = -val;
if (c.rgb[2] > 1) c.rgb[2] = 1;
if (c.rgb[1] <0) c.rgb[1]=0;
}
else if (val >= 0 && val <.0001)
{
c.rgb[0] = 85/255.;
c.rgb[1]=212/255,;
c.rgb[2] = 208/255.;
¥
else if (val >=.0001)
{
c.rgb[0] = val/2;
c.rgb[1] = .5-val;
c.rgb[2] = 0;
¥
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void initCube(gl cube & cube, point3D center, double width, gl color * colors, double
xstretch, double ystretch, double zstretch, bool singleColor)
{
float r=width/2;
float vertexPosDat[8][3]=
{
center.x-r*xstretch,center.y+r*ystretch,center.z+r*zstretch}, //left,top,front
yTrry P
{center.x+r*xstretch,center.y+r*ystretch,center.z+r*zstretch}, //right,top,front
center.x+tr¥*xstretch,center.y+r*ystretch,center.z-r*zstretch}, //right,top,back
yTrty g p
{center.x-r*xstretch,center.y+r*ystretch,center.z-r*zstretch}, //left, top,back
center.x-r*xstretch,center.y-r*ystretch,center.z+r*zstretch}, //left,bottom,front
yrty
{center.x+r*xstretch,center.y-r*ystretch,center.z+r*zstretch}, //right,bottom,front
center.xtr¥*xstretch,center.y-r*ystretch,center.z-r*zstretch}, //right,bottom,back
y-rty g
{center.x-r*xstretch,center.y-r*ystretch,center.z-r*zstretch} //left,bottom,back

¥

//defines the vertexes of each quad in anti-clockwise order
unsigned int quadVerDat[6][4]=

{
{0,1,2,3}, //top
{0,3,7,4}, //left
{3,2,6,7}, //back
{2,1,5,6}, //right
{0,4,5,1}, //front
{4,7,6,5}, //bottom
}s
int a,b;
//put the vertex data into the cube struct
for (a=0;a<8;++a)
{
for (b=0;b<3;++b)
{
cube.ver[a].pos[b]=vertexPosDat[a][b];
if (colors)
{
if (singleColor)
cube.ver[a].col[b]=colors[0].rgb[b];
else
cube.ver[a].col[b]=colors[a].rgb[b];
¥
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}
}

//put the quad data into the cube struct
for (a=0;a<6;++a)
{
for (b=0;b<4;++b)
{
cube.quad[a].ver[b]=quadVerDat[a][b];
}
b

}

static void drawObjects()
{

glPushMatrix();

glTranslatef(-2,-2,-2);
glRotatef(20,0,.3,0);
glRotatef(-110,1,0,0);
glScalef(.2,.2,.2);

for (int i=0;i<cubeCount; i++)
{
glBegin(GL _QUADS);
for (int j=0;j<6;++))
for (int k=0;k<4;++k)
{
int currentVer=cubes[i].quad[j].ver[k];
glColor3fv(cubes[i].ver[ currentVer ].col);
glVertex3fv(cubes[i].ver[ currentVer |.pos);

}
glEnd();

}

for (int i=0;i<controlptCount; i++)
{
glBegin(GL_QUADS);
for (int j=0;)<6;++7)
for (int k=0;k<4;++k)
{
int currentVer=controlpts[i].quad[j].ver[k];
glColor3fv(controlpts[i].ver[ currentVer ].col);
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glVertex3fv(controlpts[i].ver[ currentVer ].pos);
H
glEnd();

}

glLineWidth(4);
glPolygonMode(GL FRONT AND BACK, GL _LINE);
gl cube box, box2;
initCube(box, point3D(10,10,10), 20, 0);
float boxcolor[3] = {1,1,1};
glBegin(GL_QUADS);
for (int j=0;)<6;++))
for (int k=0;k<4;++k)
{
int currentVer=box.quad[j].ver[k];
glColor3fv(boxcolor);
glVertex3fv(box.ver[ currentVer ].pos);
§
glEnd();
initCube(box2, point3D(5,5,10), 9.95, 0,1,1,2);
glLineWidth(1);
glPolygonMode(GL FRONT AND BACK, GL LINE);
glBegin(GL_QUADS);
for (int j=0;)<6;++))
for (int k=0;k<4;++k)
{
int currentVer=box2.quad[j].ver[k];
glColor3fv(boxcolor);
glVertex3fv(box2.ver[ currentVer ].pos);
¥
glEnd();
glPolygonMode(GL FRONT AND BACK, GL _FILL);

glPopMatrix();
glPushMatrix();

glTranslatef(0,0,-100);
glPopMatrix();

void display(void)

{
glClear(GL_COLOR_BUFFER BIT | GL_DEPTH_BUFFER_BIT);
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drawObjects();
glutSwapBuffers();

}

void pick(GLint name)

{
printf("Pick: %d\n",name);

fflush(stdout);
}

int Test3D_2(int argc, char **argv)

{
/* Initialise GLUT and create a window */
glutlnit(&argc, argv);
glutlnitDisplayMode(GLUT DOUBLE | GLUT RGB | GLUT _DEPTH);
glutlnitWindowSize(900,900);
glutCreateWindow("GLT Mouse Zoom-Pan-Rotate");
/* Configure GLUT callback functions */
glutDisplayFunc(display);
glScalef(0.25,0.25,0.25);

// Configure ZPR module -
// this is used to easily manipulate the 3D image with the mouse.

zprlnit();
zprSelectionFunc(drawObjects);  /* Selection mode draw function */
zprPickFunc(pick); /* Pick event client callback */
/* Initialise OpenGL */
glDepthFunc(GL_LESS);
glEnable(GL_DEPTH_TEST);
glEnable(GL NORMALIZE);
glEnable(GL COLOR MATERIAL);
glMatrixMode(GL MODELVIEW);
/* Enter GLUT event loop */

performCalculations();

glutMainLoop();
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return O;

}

/***********************************************************************

bitmap.h

***********************************************************************/

#ifndef BITMAPHEADER H
#define BITMAPHEADER H

#include <fstream>

typedef enum {
Alpha = 262144,
Canonical = 2097152,
DontCare =0,
Extended = 1048576,
Format16bppArgb1555 =397319,
Format16bppGrayScale = 1052676,
Format16bppRgb555 = 135173,
Format16bppRgb565 = 135174,
FormatlbppIndexed = 196865,
Format24bppRgb = 137224,
Format32bppArgb = 2498570,
Format32bppPArgb = 925707,
Format32bppRgb = 139273,
Format48bppRgb = 1060876,
Format4bppIndexed = 197634,
Format64bppArgb = 34242609,
Format64bppPArgb = 1851406,
Format8bppIndexed = 198659,
Gdi=131072,
Indexed = 65536,
Max =15,
PAlpha = 524288,
Undefined =0

} PixelFormat;

#define RR 0
#define GG 1
#define BB 2
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#define AA 3

#define TYPE _ARGB32 2498570
#define TYPE_RGB24 137224
#define TYPE _RGB32 139273

class bitmapHeader {

public:
unsigned long width;
unsigned long height;
unsigned long stride;
unsigned long type;
unsigned char * data;

public:
unsigned char & getVal (int x, int y, int rgba) const {
static unsigned char defRet = 100;
if (x >= (int)width) x = width - 1; else if (x <0) x = 0;
if (y >= (int)height) y = height - 1; else if (y <0) y =0;
if (type == TYPE_ARGB32) {
if (rgba == BB) return data[y*stride + x*4];
if (rgba == GG) return data[y*stride + x*4+1];
if (rgba == RR) return data[y*stride + x*4+2];
if (rgba == AA) return data[y*stride + x*4+3];
} else if (type == TYPE_RGB24) {
if (rgba == BB) return data[y*stride + x*3];
if (rgba == GQ) return data[y*stride + x*3+1];
if (rgba == RR) return data[y*stride + x*3+2];
if (rgba == AA) return defRet=255;
} else if (type == TYPE_RGB32) {
if (rgba == BB) return data[y*stride + x*4];
if (rgba == GQG) return data[y*stride + x*4+1];
if (rgba == RR) return data[y*stride + x*4+2];
if (rgba == AA) return defRet=255;
} else if (type == Format8bppIndexed) {
if (rgba != AA) return data[y*stride + x];
if (rgba == AA) return defRet=255;
}

return defRet;

}

void getVals (int X, int y, int &r, int &g, int &b, int &a) const

{
if (x >= (int)width) x = width - 1; else if (x <0) x = 0;
if (y >= (int)height) y = height - 1; else if (y <0) y = 0;
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if (type == TYPE_ARGB32)

{
unsigned char* ptr = data + (y*stride + x*4);
b = ptr[0];
g=ptr[1];
r=ptr2];
a=ptr[3];

}

else if (type == TYPE_RGB24)

{
unsigned char* ptr = data + (y*stride + x*3);
b = ptr[0];
g=pt[l];
1 = ptr[2];
a=255;

b

else if (type == TYPE_RGB32)

{
unsigned char* ptr = data + (y*stride + x*4);
b =ptr[0];
g=pt[l];
1= ptr[2];
a=255;

}

else if (type == Format8bppIndexed)

{
unsigned char* ptr = data + (y*stride + x);
r=g=b=ptr[0];
a=255;

}

b

void setVals (int x, int y, int r, int g, int b, int a = 255)
{
if (x >= (int)width) x = width - 1; else if (x <0) x =0;
if (y >= (int)height) y = height - 1; else if (y <0) y =0;
if (type == TYPE_ARGB32)
{
unsigned char* ptr = data + (y*stride + x*4);
ptr[0] =b;
ptr[1] = g;
ptr2] =r;
ptr[3] =a;
¥
else if (type == TYPE_RGB24)
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unsigned char* ptr = data + (y*stride + x*3);
ptr[0] = b;
ptr[1] = g;
ptr[2] =1

}

else if (type == TYPE_RGB32)

{
unsigned char* ptr = data + (y*stride + x*4);
ptr[0] = b;
ptfl] =g;
ptr[2] =1

}

else if (type == Format8bpplndexed)

{
unsigned char* ptr = data + (y*stride + x);
ptr{0] = 1;

b

}

void getHSLA (int x, int y, float &h, float &s, float &I, int &a) const
{

int intr,intg,intb;

getVals(x,y,intr,intg,intb,a);

double r = intr/255.;

double g = intg/255.;

double b = intb/255.;

if (==g && r==b)
{
h = (float)-1;
s = (float)0;
1 = (float)r;
return;

}

doublemax=(r>=g?(r>=b?r:b): (g>=b?g:b));
double min=(r<=g?(r<=b?r:b):(g<=b?g:b));
double delta = max-min;

if (r == max)

h = (float)((60./360.) * ((g-b)/delta));
else if (g == max)

h = (float)((60./360.) * ((b-r)/delta) + (120./360.));
else if (b == max)
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}

h = (float)((60./360.) * ((r-g)/delta) + (240./360.));
if (h <0 | h>=1) h=h-floor(h);

1 = (float)((max-+min)/2);

s = (float)((I<.5 ? (max-min)/(max-+min) : (max-min)/(2-max-min)))

void setHSLA (int x, int y, float h, float s, float 1, int a = 255)

{

}

if (h< 0| h>=1) h =h-floor(h);
if(s<0)s=0;
if(s>1)s=1;
if (1<0)1=0;
ifd>1)1=1;

int r,g,b;

if (s==0)

{
r =g = b = (int)floor(1*¥255+.5);
setVals(x,y,r,g,b,a);
return;

}

float v1,v2;

if (I<.5) v2 = I*(1+s);
else v2 = (I+s)-(1*s);
vl =2%]-v2;

r = (int)floor(HueToRGB(v1,v2,(float)(h+(1./3.)))*255 + .5);
g = (int)floor(HueToRGB(v1,v2,h)*255 + .5);
b = (int)floor(HueToRGB(v1,v2,h-(1./3.))*255 +.5);

setVals(x,y,r,g,b,a);

float HueToRGB(float v1, float v2, float h)

{

}

void getHSVA (int x, int y, float &h, float &s, float &v, int &a) const

if (h<0| h>=1) h =h-floor(h);

if (6*h <1) return vl + (v2-v1)*6*h;

if (2*h <1) return v2;

if (3*h <2) return v1 + (v2-v1)*((2./3.)-h)*6;
return vl;
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int intr,intg,intb;
getVals(x,y,intr,intg,intb,a);
double r = intr/255.;

double g = intg/255.;
double b = intb/255.;

if (=g && r==b)
{

s=0;

h=-1;

V=r;

return;

}

double max=(r>=g?(r>=b?r:b):(g>=b?g:b));
double min=(r<=g?(r<=b?r:b):(g<=b?g:b));
double delta = max-min;

if (r == max)

h = (60./360.) * ((g-b)/delta);
else if (g == max)

h = (60./360.) * ((b-r)/delta) + (120./360.);
else if (b == max)

h =(60./360.) * ((r-g)/delta) + (240./360.);
if (h< 0| h>=1) h =h-floor(h);

s = (max-min) / max;
V = max;

}

void setHSVA (int x, int y, float h, float s, float v, int a = 255)

{
if (h< 0| h>=1) h=h-floor(h);

if(s<0)s=0;

if(s>1)s=1;

if (v<0)v=0;

ifv>1)v=1;

int r,g,b;

if (s==0)

{
r =g =b = (int)floor(v*255+.5);
setVals(x,y,r,g,b,a);
return;
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}

int h_i= (int)h*6;

float f=h*6-h_i;
floatp=v * (1. - s);

float g =v * (1. - f*s);
float t =v * (1. - s*(1.-1));

if (h i==0)

{
r = (int)floor(v*255+.5);
g = (int)floor(t*255+.5);
b = (int)floor(p*255+.5);

}

elseif (h i==1)

{
r = (int)floor(q*255+.5);
g = (int)floor(v*255+.5);
b = (int)floor(p*255+.5);

b

else if (h_i==2)

{
r = (int)floor(p*255+.5);
g = (int)floor(v*255+.5);
b = (int)floor(t*255+.5);

}

else if (h_i==13)

{
r = (int)floor(p*255+.5);
g = (int)floor(q*255+.5);
b = (int)floor(v*255+.5);

}

elseif (h i==4)

{
r = (int)floor(t*255+.5);
g = (int)floor(p*255+.5);
b = (int)floor(v*255+.5);

}

elseif (h_1i==75)

{
r = (int)floor(v*255+.5);
g = (int)floor(p*255+.5);
b = (int)floor(q*255+.5);

}
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setVals(x,y,r,g,b,a);
¥

unsigned char avgTone (int X, int y) const { // returns average tone of the pixel
return (getVal(x, y, RR) + getVal(x, y, GG) + getVal(x, y, BB)) / 3;
}
/*unsigned long & getPixel32 (int x, int y) const {
static unsigned long defRet = 0xffaa9988;
if (type == TYPE_ARGB32) {
return ((unsigned long *)data)[y*stride/4 + x];
} else return defRet;
3/
unsigned char * getData() const {
return data;

}

int BitCount() const
{
if (type == TYPE_ARGB32 || type == TYPE RGB32)
return 32;
if (type == TYPE _RGB24)
return 24;

}

unsigned long & Pixellnt(int x, int y)
{
int bits = BitCount();
if (bits == 32)
return *((unsigned long *) &(data[y*stride + x*41]));
else if (bits == 24)
return *((unsigned long *) &(data[y*stride + x*3]));
h

bitmapHeader (unsigned long w, unsigned long h, unsigned long t =
TYPE ARGB32) {
int multiplier;
if (w < 1) width = 1; else width = w;
if (h < 1) height = 1; else height = h;
type =t;
if (type == TYPE_ARGB32 || type == TYPE RGB32) {
multiplier = 4;
} else if (type == TYPE RGB24) {
multiplier = 3;

}
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stride = (((w * multiplier)-1)/4+1)*4;
data = new unsigned char[height * stride];
}
~bitmapHeader () {
delete data;
}
bitmapHeader & operator = (const bitmapHeader & rhs) {
int cw, ch;
if (width < rhs.width) cw = width; // determine width constraint
else cw = rhs.width;
if (height < rhs.height) ch = height; // determine height constraint
else ch = rhs.height;
for (int1=0; 1 <cw; i++) {
for (int j = 0; j < ch; j++) {
getVal(i,j,RR) = rhs.getVal(i,j,RR);
getVal(1,j,GG) = rhs.getVal(i,j,GG);
getVal(i,j,BB) = rhs.getVal(i,j,BB);
}
}
return *this;
}
void resize (unsigned long w, unsigned long h, unsigned long t =
TYPE ARGB32) {
int multiplier;
if (w < 1) width = 1; else width = w;
if (h < 1) height = 1; else height = h;
type =t;
if (type == TYPE_ARGB32 || type == TYPE RGB32) {
multiplier = 4;
} else if (type == TYPE RGB24) {
multiplier = 3;
}
stride = (((w * multiplier)-1)/4+1)*4;
delete [] data;
data = new unsigned char[height * stride];

}

void Whitewash (int r = 255, int g = 255, int b = 255, int a = 255)

{
for (int y=0;y<height;y++)
for (int x=0;x<width;x++)
this->setVals(x,y,r,g,b,a);
}

void LoadFile (char * fname)
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std::ifstream fin (fhame, std::10s::in|std::i0s::binary);

unsigned long dataOffset;
unsigned long filesize;
unsigned long zero;
unsigned long headerSize;
unsigned long w;

unsigned long h;

unsigned short planes;
unsigned short bitsperpixel,;
unsigned long compression;

fin.ignore();

fin.ignore();

fin.read((char*)&filesize, sizeof(filesize));
fin.read((char*)&zero, sizeof(zero));
fin.read((char*)&dataOffset, sizeof(dataOffset));
fin.read((char*)&headerSize, sizeof(headerSize));
fin.read((char*)&w, sizeof(w));
fin.read((char*)&h, sizeof(h));
fin.read((char*)&planes, sizeof(planes));
fin.read((char*)&bitsperpixel, sizeof(bitsperpixel));
fin.read((char*)&compression, sizeof(compression));

resize(w,h);
fin.seekg(dataOffset, std::ios::beg);

for (int i = height-1; i >= 0; i--)

{
for (int j = 0; j < width; j++)
{
if (bitsperpixel == 24)
{
getVal(j, i, BB) = fin.get();
getVal(j, i, GG) = fin.get();
getVal(j, i, RR) = fin.get();
}
¥
for (int j = 0; j < (((width*3)-1)/4+1)*4-(width*3); j++)
fin.ignore(); // extract 4bit wide padding
¥
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fin.close();

}

void SaveFile (char * fname) const

{

std::ofstream fout (fname, std::ios::out|std::10s::binary);

unsigned long dataOffset = 54;

unsigned long filesize = dataOffset+( (((width*3)-1)/4+1)*4 *height);
unsigned long zero = 0;

unsigned long headerSize = 0x28; // used with windows bmp
unsigned long w = width;

unsigned long h = height;

unsigned short planes = 1;

unsigned short bitsperpixel = 24;

unsigned long compression = 0;

unsigned long bitmapdatasize = 0;

unsigned long resolution = 2834; // px/meter

fout.write("BM",2*sizeof(char));
fout.write((char*)&filesize, sizeof(filesize));
fout.write((char*)&zero, sizeof(zero));
fout.write((char*)&dataOffset, sizeof(dataOffset));
fout.write((char*)&headerSize, sizeof(headerSize));
fout.write((char*)&w, sizeof(w));
fout.write((char*)&h, sizeof(h));
fout.write((char*)&planes, sizeof(planes));
fout.write((char*)&bitsperpixel, sizeof(bitsperpixel));
fout.write((char*)&compression, sizeof(compression));
fout.write((char*)&bitmapdatasize, sizeof(bitmapdatasize));
fout.write((char*)&resolution, sizeof(resolution));
fout.write((char*)&resolution, sizeof(resolution));
fout.write((char*)&zero, sizeof(zero));
fout.write((char*)&zero, sizeof(zero));

for (int i = height-1; i >= 0; i--)

{
for (int j = 0; j < width; j++)
{
fout.put(getVal(j, i, BB));
fout.put(getVal(j, i, GG));
fout.put(getVal(j, i, RR));
}

for (int j = 0; j < (((width*3)-1)/4+1)*4-(width*3); j++)
fout.put(1); / pad to 4 bytes wide
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}
fout.put(0);
fout.put(0);

fout.close();

}

static void WriteBitmapHeader (char * fname, unsigned long w, unsigned long h,
unsigned long DPM = 2834)
{
std::ofstream fout (fname, std::ios::out|std::io0s::binary);
WriteBitmapHeader(fout, w, h, DPM);
fout.close();

}

static void WriteBitmapHeader (std::ofstream &file, unsigned long w, unsigned
long h, unsigned long DPM = 2834)
{
unsigned long dataOffset = 54;
unsigned long filesize = dataOffset+( (((w*3)-1)/4+1)*4 *h);
unsigned long zero = 0;
unsigned long headerSize = 0x28; // used with windows bmp
unsigned short planes = 1;
unsigned short bitsperpixel = 24;
unsigned long compression = 0;
unsigned long bitmapdatasize = 0;
unsigned long resolution = DPM; // px/meter

file.write("BM",2*sizeof(char));
file.write((char*)&filesize, sizeof(filesize));
file.write((char*)&zero, sizeof(zero));
file.write((char*)&dataOffset, sizeof(dataOffset));
file.write((char*)&headerSize, sizeof(headerSize));
file.write((char*)&w, sizeof(w));

file.write((char*)&h, sizeof(h));
file.write((char*)&planes, sizeof(planes));
file.write((char®)&bitsperpixel, sizeof(bitsperpixel));
file.write((char*)&compression, sizeof(compression));
file.write((char*)&bitmapdatasize, sizeof(bitmapdatasize));
file.write((char*)&resolution, sizeof(resolution));
file.write((char*)&resolution, sizeof(resolution));
file.write((char*)&zero, sizeof(zero));
file.write((char*)&zero, sizeof(zero));
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void WriteRowToBitmapFile (char * fname, int row) const

{
std::ofstream fout (fname, std::ios::out|std::i0s::binary|std::i0s::app);
WriteRowToBitmapFile(fout, row);
fout.close();

}

void WriteRowToBitmapFile (std::ofstream &file, int row) const
{
for (int j = 0; j < width; j++)
{
//file.put(getVal(j, row, BB));
/ile.put(getVal(j, row, GG));
//file.put(getVal(j, row, RR));
intr,g,b,a;
getVals(j, row, r,g,b,a);
file.put((unsigned char)b);
file.put((unsigned char)g);
file.put((unsigned char)r);
j
for (int j = 0; j < (((width*3)-1)/4+1)*4-(width*3); j++)
file.put(1); // pad to 4 bytes wide
b

static void FinalizeBitmapFile (char * fname)

{
std::ofstream fout (fname, std::i0s::out|std::i0s::binary|std::i0s::app);
FinalizeBitmapFile(fout);
fout.close();

}
static void FinalizeBitmapFile (std::ofstream &file)
{
file.put(0);
file.put(0);
}
¥
#endif

/***********************************************************************

simplematrix.h
***********************************************************************/
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#ifndef SIMPLEMATRIX
#define SIMPLEMATRIX

#include <math.h>
#include <iostream>
using namespace std;
#include <fstream>

class SimpleMatrix

{ .
private:
void Swap(double & a, double & b)
{
double tmp = a;
a=D>;
b = tmp;

}

int RowWithLargestValueInColumn (int ¢, int minRow = 0)
{
int r = minRow;
double val = fabs(m[minRow][c]);
for (int i=minRow+1;i<h;i++)
if (fabs(m[i][c]) > val)

{
val = fabs(m[i][c]);
r=i;
§
return r;
§
void QuickCOUT()
{
for (int i=0;i<h;i++)
{
for (int j=0;j<w:j++)
cout <<ml[i][j] <<",";
C()ut << "\nH;
j
C()ut <<H\n";
j
void QuickPrint()
{
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std::ofstream fout ("simplematrixOutput.txt", std::ios::out);

for (int i=0;i<h;i++)

{
for (int j=0;j<w;j++)
fout <<ml[i][j] <<",";
fout << "\n";
§
fout <<"\n";

fout.close();

}

public:
double ** m;
int w;
int h;

SimpleMatrix() : m(0), w(0), h(0)

{
}
SimpleMatrix(int w, int h) : m(0), w(0), h(0)
{
SetDimensions(w,h);
}
SimpleMatrix(SimpleMatrix & v) : m(0), w(0), h(0)
{
*this = v;
h
~SimpleMatrix()
{
Clear();
}
void Clear()
{

for (int i=0;i<h;i++)
delete [] m[i];

delete [] m;

m=0;

w=h=0;
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void SetDimensions (int w, int h)
{
Clear();
this->h = h;
this->w = w;
m = new double *[h];
for (int i=0;1<h;i++)
m[i] = new double [w];
for (int i=0;i<h;i++)
for (int j=0;j<w;j++)
\ m(i][j] = 0;

SimpleMatrix & operator = (SimpleMatrix & m2)
{
SetDimensions(m2.w, m2.h);
for (int i=0;1<h;i++)
for (int j=0;j<w;j++)
m[i][j] = m2.m[i][j];
return *this;

}

void AppendMatrixRight(SimpleMatrix & v)
{
SimpleMatrix tmp(w+v.w, h);
for (int i=0;i<h;i++)
for (int j=0;j<w;j++)
tmp.ml[i][j] = m[il[jl;
for (int i=0;i<h;i++)
for (int j=0;j<v.w;j++)
tmp.mli][w+] = v.m[i][jl;
*this = tmp;

}

void AppendMatrixBottom (SimpleMatrix & v)
{
SimpleMatrix tmp(w, h+v.h);
for (int i=0;i<h;i++)
for (int j=0;j<w;j++)
tmp.m(i][j] = mlil[jl;
for (int i=0;1<v.h;i++)
for (int j=0;j<w;j++)
tmp.m[h+i][j] = v.m[i][j];
*this = tmp;
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}

SimpleMatrix SolveGaussianAgumented()
{

SimpleMatrix v(*this);

//v.QuickCOUT();
//v.QuickPrint();

for (int i=0;1<v.h;i++)

{
int swap = v.RowWithLargestValueInColumn(i, 1);
v.SwapRows(i, swap);

/Iv.QuickCOUT();

for (int j=0;j<v.h;j++)
{
if (j==1) continue;
double scaleby = v.m[j][i] / v.m[i][i];
for (int k=0;k<v.w;k++)
v.m[j][k] -= v.m[i][k] * scaleby;
v.m[j][i] = 0;
}

//v.QuickCOUT();
h

/I gather together the result
SimpleMatrix retval(1, v.h);
for (int i=0;1<v.h;i++)
retval. m[i][0] = v.m[i][w-1] / v.m[i][i];

/Iv.QuickCOUT();
//v.QuickPrint();

return retval;

}

void SwapRows (int r1, int 2)

{
for (int i=0;i<w;i++)
Swap(m[r1][i], m[r2][i]);
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¥
#endif

/***********************************************************************

sorts.h
***********************************************************************/

#ifndef SORTS H
#define SORTS_H

template <class x>
void TriQuickSort (x * data, int length, bool sortAscending = true, bool (*lessthan)(const
x&, const x&) = 0, bool (*greaterthan)(const x&, const x&) = 0) {

// This function does not sort the data, it sorts the indices.

if (lessthan == 0 || greaterthan == 0) {
TriQuickSort2(data, sortAscending, 0, length-1, 4);
InsertionSort(data, sortAscending, 0, length-1);
} else {
TriQuickSort2(data, sortAscending, 0, length-1, lessthan, greaterthan, 4);
InsertionSort(data, sortAscending, 0, length-1, lessthan, greaterthan);

j
j

template <class x>
void TriQuickSort2 (x * data, bool sortDecending, int min, int max, int splitLength =4) {

if (max - min > splitLength) {
int 1 = (max + min) / 2;
if (data[min] > data[i]) SwapAny(data[min], data[i]);
if (data[min] > data[max]) SwapAny(data[min], datamax]);
if (data[i] > data[max]) SwapAny(data[i], data[max]);
int j = max-1;
SwapAny(datali], data[j]);

1=min;
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x itemp = data[j]; //indices][j];

do {
do {
i++;
} while (data[i] < itemp);
do {
J==s
} while (data[j] > itemp);

if (j <1) break;
SwapAny(data[i], data[j]);

}+ while (true);
SwapAny(datali], data[max-1]);

TriQuickSort2(data, sortDecending, min, j, splitLength);
TriQuickSort2(data, sortDecending, i+1, max, splitLength);

}

template <class x>

void TriQuickSort2 (x * data, bool sortDecending, int min, int max, bool
(*lessthan)(const x&, const x&), bool (*greaterthan)(const x&, const x&), int
splitLength = 4) {

if (max - min > splitLength) {
int 1 = (max + min) / 2;
if (greaterthan(data[min], data[i])) SwapAny(data[min], data[i]);

if (greaterthan(data[min], datamax])) SwapAny(data[min], data[max]);
if (greaterthan(data[i], data[max])) SwapAny(data[i], data[max]);

int j = max-1;
SwapAny(data[i], data[j]);
1=min;

x itemp = data[j]; //indices][j];

do {
do {
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i++;
} while (lessthan(data[i], itemp));

do{

J-3
} while (greaterthan(datalj], itemp));

if (j <1) break;
SwapAny(data[i], data[j]);

}+ while (true);
SwapAny(datali], data[max-1]);

TriQuickSort2(data, sortDecending, min, j, lessthan, greaterthan, splitLength);
TriQuickSort2(data, sortDecending, i+1, max, lessthan, greaterthan, splitLength);

template <class x>
void InsertionSort (x * data, bool sortDecending, int min, int max) {

x dtemp;
int j;
for (int i = min+1; 1 <= max; i++) {

//itemp = data[i];
dtemp = data][i];

1=5

while (j > min) {
if (data[j-1] <= dtemp) break;
data[j] = data[j-1];
J==s

}

data[j] = dtemp;
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template <class x>
void InsertionSort (x * data, bool sortDecending, int min, int max, bool (*lessthan)(const
x&, const x&), bool (*greaterthan)(const x&, const x&)) {

x dtemp;
int j;
for (int i = min+1; 1 <= max; i++) {

//itemp = data[i];
dtemp = data][i];

=5

while (j > min) {
if (!greaterthan(data[j-1], dtemp)) break;
data[j] = data[j-1];
J==s

b

data[j] = dtemp;

template <class x>
void TriQuickSortIndices (x * data, int * indices, int length, bool sortDecending = true) {

// This function does not sort the data, it sorts the indices.

TriQuickSortIndices2(data, indices, sortDecending, 0, length-1, 4);
InsertionSortIndices(data, indices, sortDecending, 0, length-1);

}

template <class x>
void TriQuickSortIndices2 (x * data, int * indices, bool sortDecending, int min, int max,
int splitLength = 4) {
if (max - min > splitLength) {

int 1 = (max + min) / 2;
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if (data[indices[min]] > data[indices[i1]]) SwapAny(indices[min], indices[i]);
if (data[indices[min]] > data[indices[max]]) SwapAny(indices[min],
indices[max]);

if (data[indices[i]] > data[indices[max]]) SwapAny(indices[i], indices[max]);

int j = max-1;

SwapAny(indices[i], indices[j]);
1=min;

x itemp = data[indices[j]]; //indices[j];

do {
do {
1++;
} while (data[indices[i]] < itemp);
do {
J-=
}+ while (data[indices[j]] > itemp);

if (j <1) break;
SwapAny(indices[i], indices[j]);

} while (true);
SwapAny(indices[i], indices[max-1]);

TriQuickSortIndices2(data, indices, sortDecending, min, j, splitLength);
TriQuickSortIndices2(data, indices, sortDecending, i+1, max, splitLength);

template <class some>
__inline void SwapAny (some & x, some & y) {
static some temp;

temp = X;
X=Yy;
y = temp;

}

template <class x>
void InsertionSortIndices (x * data, int * indices, bool sortDecending, int min, int max) {
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x dtemp;
int j, itemp;
for (int i = min+1; 1 <= max; i++) {

itemp = indices[1];
dtemp = data[itemp];

=5

while (j > min) {
if (data[indices[j-1]] <= dtemp) break;
indices[j] = indices[j-1];
J==s

}

indices[j] = itemp;

¥
#endif

/***********************************************************************

all sparse_interpolators.h
***********************************************************************/

#ifndef AIL_ SPARSE INTERPOLATORS H
#define ALL_SPARSE INTERPOLATORS H

#include "nearestneighbor_interpolator.h"
#include "inversedistance interpolator.h"
#include "spherical interpolator.h"
/[#include "visibility _interpolator.h"
#include "thinplatespline interpolator.h"
#include "volumespline_interpolator.h"
#include "multiquadric_interpolator.h"
/[#include "regional interpolator.h"
#include "cubicspline interpolator.h"
#include "polynomial_interpolator.h"
#include "average interpolator.h"

#endif

/***********************************************************************
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sparse_interpolator.cpp
***********************************************************************/

#ifndef SPARSE_INTERPOLATOR_H
#define SPARSE_INTERPOLATOR_H

#include <math.h>
#include "3Dgeometry.h"
#include "simplematrix.h"
#include "sorts.h"

class sparse_interpolator
{
protected:
point3D *points;
double *values;
int pointCount;
double *weights;
bool dataHasChanged;

void Clear()

{
delete[] points;
delete[] values;
delete[] weights;
points = 0;
values = 0;
weights = 0;
pointCount = 0;

}
public:

sparse_interpolator()
{
points = 0;
values = 0;
weights = 0;
pointCount = 0;
dataHasChanged = false;
h

char* InterpolationType();
double InterpolatePoint(point3D);

120



void RegisterSparseData(point3D points[], double values[], int count)

{

}

if (count != pointCount)

{
Clear();
this->points = new point3D[count];
this->values = new double[count];
weights = new double[count];

}

pointCount = count;
for (int i=0;i1<pointCount;i++)
{
this->points[i] = points[i];
this->values[i] = values][i];
}
NormalizeWeights();
dataHasChanged = true;

void RegisterSparseData(double points[], double values[], int count)

{

}

point3D *pts = new point3D[count];
for (int i=0;i<count;i++)

pts[i].x = points][i];
RegisterSparseData(pts, values, count);
delete[] pts;

point3D RandomPointInsideDataBox()

{

}

point3D retval;
if (pointCount < 1) return retval;

retval.x = minX() + (maxX()-minX()) * (double)rand() / RAND MAX;

retval.y = minY() + (maxY()-minY()) * (double)rand() / RAND MAX;
retval.z = minZ() + (maxZ()-minZ()) * (double)rand() / RAND MAX;

return retval;

double minX ()

{

if (pointCount < 1) return 0;
double val = points[0].x;
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}

for (int i=1;i<pointCount;i++)
if (points[i].x<val)
val = points[i].x;
return val;

double maxX ()

{

}

if (pointCount < 1) return 0;
double val = points[0].x;
for (int i=1;i<pointCount;i++)
if (points[i].x>val)
val = points[i].x;
return val;

double minY()

{

}

if (pointCount < 1) return 0;
double val = points[0].y;
for (int i=1;i<pointCount;i++)
if (points[i].y<val)
val = points[i].y;
return val;

double maxY ()

{

}

if (pointCount < 1) return 0;
double val = points[0].y;
for (int i=1;i<pointCount;i++)
if (points[i].y>val)
val = points[i].y;
return val;

double minZ ()

{

if (pointCount < 1) return 0;
double val = points[0].z;
for (int i=1;i<pointCount;i++)
if (points[i].z<val)
val = points[i].z;
return val;
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double maxZ ()

{
if (pointCount < 1) return 0;
double val = points[0].z;
for (int i=1;i<pointCount;i++)
if (points[i].z>val)
val = points[i].z;
return val;
}
double minV ()
{
if (pointCount < 1) return 0;
double val = values[0];
for (int i=1;i<pointCount;i++)
if (values[i]<val)
val = values|[i];
return val;
}
double maxV ()
{
if (pointCount < 1) return 0;
double val = values[0];
for (int i=1;i<pointCount;i++)
if (values[i]>val)
val = values|[i];
return val;
}
bool InsideConvexHull 2D (point3D pt)
{

if (pointCount < 3) return false;

vector3D unitVector;
unitVector.p.x = 1;
double *angles = new double[pointCount];

for (int i=0; i<pointCount; i++)

{
if (points[i] == pt) return true;
angles[i] = vector3D:: AngleBetweenVectors((points|i]-pt),unitVector);
if ((points[i]-pt).y < 0) angles[i] = 2*3.1415926-angles][1];

}
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sort(angles, pointCount);

double largestSpan = 0;
for (int i=1; i<pointCount; i++)
{
double span = angles[i]-angles[i-1];
if (span > largestSpan)
largestSpan = span,;
}
double span = angles[0]-angles[pointCount-1]+2%3.1415926
if (span > largestSpan)
largestSpan = span,;

delete[] angles;

return largestSpan < 3.1415926;

}
void QuickPrint ()
{
for (int i=0;1<pointCount;i++)
cout <<
points[i].x <<", " <<
points[i].y <<", " <<
points[i].z << ", " <<
values[i] << "\n";
cout << "\n";
h
protected:

void sortPointsByDistance (point3D center = point3D(0,0,0))
{

double *distances = new double[pointCount];
int *indices = new int[pointCount];

for (int i=0;i<pointCount;i++)

{

distances[i] = (points[i]-center).DistanceFromOrigin();
indices[i] = 1;

}

TriQuickSortIndices(distances, indices, pointCount);
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point3D *newpts = new point3D[pointCount];
double *newvals = new double[pointCount];
for (int i=0;i<pointCount;i++)
{

newpts[i] = points[indices[i]];

newvals[i] = values[indices][i]];

}

RegisterSparseData(newpts, newvals, pointCount);

delete[] distances;
delete[] indices;
delete[] newpts;
delete[] newvals;

}

void sortPoints (vector3D vectorNormal)

{

double *distances = new double[pointCount];
int *indices = new int[pointCount];

vectorNormal.Normalize(); // just in case;

for (int i=0;1<pointCount;i++)

{
distances|1] = vector3D::Project(points[i], vectorNormal).Length();
indices[i] = 1;

}

TriQuickSortIndices(distances, indices, pointCount);

point3D *newpts = new point3D[pointCount];
double *newvals = new double[pointCount];
for (int i=0;i<pointCount;i++)
{

newpts[i] = points[indices[i]];

newvals[i] = values[indices][i]];

}

RegisterSparseData(newpts, newvals, pointCount);

delete[] distances;
delete[] indices;
delete[] newpts;
delete[] newvals;
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}

void sort (double *arr, int len)

{
h

quicksort(arr, 0, len-1);

void quicksort(double *arr, int left, int right)

{

}

int p;

if(left>=right)

return;

p = partition(arr,left, right);

quicksort(arr,left,p-1);
quicksort(arr,p+1,right);

int partition(double *arr, int left, int right)

{

}

int first=left, pivot=right--;
while(left<=right)

{
while(arr[left]<arr[pivot])
left++;
while((right>=first)&&(arr[right]>=arr[pivot]))
right--;
if(left<right)
{
swap(arr[left],arr[right]);
left++;
}
J

if(left!=pivot)
swap(arr[left],arr[pivot]);

return left;

template <class x>
void swap(x &i, x &j)

{

X temp=i;
1=j;
j=temp;
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}

void MakeSimple WeightDistribution()

{

MakeSimple WeightDistribution(weights);
}
void MakeSimpleWeightDistribution (double *w)
{

for (int i=0; i<pointCount; i++)

w[i] = 1.0/pointCount;

b
double ApplyWeights ()
{

double interpolant = 0;

for (int i=0; 1 < pointCount; i++)
interpolant += weights[i]*values][i];

return interpolant;

b

void NormalizeWeights()

{ NormalizeWeights(weights);

}

void NormalizeWeights (double *w)
{

// normalize the weights

double sum = 0;

for (int 1=0; 1 < pointCount; i++) sum += wJ[i];
for (int i=0; 1 < pointCount; i++) w[i] /= sum;

h
void MergeWeights (double *w2)
{
for (int i=0; 1 < pointCount; i++)
weights[i] *= w2[i];
NormalizeWeights();
}

void CreateDistanceWeights (const point3D target, double distancePower, double*
W)

{
MakeSimple WeightDistribution(w);
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if (pointCount < 1) return;

if (distancePower == 0)

{
MakeSimpleWeightDistribution(w);
return;

}

// resolve semantic issues
if (distancePower > 0) distancePower = -distancePower;

// save problems later on by checking to see if any known points are exactly the
same as the target
for (int i=0; 1 < pointCount; i++)

if (target == points[i])

{
for (int j=0; j < pointCount; j++)
w[j]=0;
w(i] = 1.0;
return;
}

// calc weights
if (distancePower == 1.0)

{
for (int i=0; 1 < pointCount; i++)
w[i] *= 1.0/ (target-points[i]).DistanceFromOrigin();
}
else
{
for (int i=0; 1 < pointCount; i++)
w[i] *= pow((target-points[i]).DistanceFromOrigin(), distancePower);
}

// normalize the weights
NormalizeWeights(w);

/***********************************************************************

average interpolator.h
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****************>l<**>l<****>l<**>l<****>l<**************************************/
#ifndef AVERAGE INTERPOLATOR H

#define AVERAGE INTERPOLATOR H

#include "sparse interpolator.h"

class average interpolator: public sparse interpolator

{
private:
public:
average interpolator ()
{
}
~average _interpolator()
{
Clear();
}
char* InterpolationType()
{
return "Average";
}
double InterpolatePoint(point3D target)
{
return InterpolatePoint();
}
double InterpolatePoint()
{
if (pointCount < 1) return 0;
double sum = 0;
for (int i=0; 1 < pointCount; i++)
sum += values|[i];
return sum/pointCount;
}
}3
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#endif

/***********************************************************************

cubicspline interpolator.h
***********************************************************************/

#ifndef CUBICSPLINE INTERPOLATOR _H
#define CUBICSPLINE INTERPOLATOR _H

#include "sparse_interpolator.h"

class cubicspline interpolator: public sparse interpolator

{

private:
SimpleMatrix s;

public:
cubicspline_interpolator ()

{
}

~cubicspline interpolator()

{
}

Clear();

char* InterpolationType()
{

}

return "Cubic Spline";

double InterpolatePoint(point3D target)
{

}

return InterpolatePoint(target.x);

double InterpolatePoint(double target)
{

if (pointCount < 4) return 0;

if (dataHasChanged) FindCoef();
dataHasChanged = false;

return ApplyCoef(target);

}
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private:

double ApplyCoef (double target)
{

double x = target;

double val = 0;

for (int j=0;j<pointCount;j++)
if (x == points[j].x)
return values|[j];

for (int j=0;j<pointCount-1;j++)
{
if ((x > points[j].x && x < points[j+1].x) || (x < points[0].x && j==0) || (x >
points[pointCount-1].x && j == pointCount-2))

{
double a = values[j];
double b = s.m[j][0];
double ¢ = 3*(values[j+1]-values[j])-2*s.m[j][0]-s.m[j+1][0];
double d = 2*(values[j]-values[j+1])+s.m[j][0]+s.m[j+1][0];
double p = (x-points[j].x)/(points[j+1].x-points[j].X);
val =a + b*p + c*p*p + d*p*p*p;
h
}
return val;
}
void FindCoef()
{

sortPoints(vector3D(1,0,0));
SimpleMatrix m (pointCount+1, pointCount);

m.m[0][0] = 2;

m.m[0][1]=1;
m.m[pointCount-1][pointCount-1] = 2;
m.m[pointCount-1][pointCount-2] = 1;
for (int i=1;i<pointCount-1;i++)

{
m.m[i][i-1] = 1;
m.m[i][1] = 4;
m.m[i][it1]=1;
}
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m.m[0][pointCount] = 3*(values| 1]-values[0]);
m.m[pointCount-1][pointCount] = 3*(values[pointCount-1]-values[pointCount-

2]);
for (int i=1;i<pointCount-1;i++)
m.m[i][pointCount] = 3*(values[i+1]-values[i-1]);
s = m.SolveGaussianAgumented();
}
¥
#endif

/***********************************************************************

inversedistance _interpolator.h
***********************************************************************/

#ifndef INVERSEDISTANCE INTERPOLATOR H
#define INVERSEDISTANCE INTERPOLATOR H

#include "sparse_interpolator.h"

class inversedistance interpolator: public sparse_interpolator

{

private:
void Clear()

{
}

sparse_interpolator::Clear();

public:
inversedistance interpolator ()

{
j

~inversedistance interpolator()

{
}

Clear();

char* InterpolationType()
{

return "Inverse Distance";
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}

double InterpolatePoint(point3D target, double distancePower = 2)

{

if (pointCount < 1) return 0;

CreateDistance Weights(target, distancePower, weights);
return ApplyWeights();

}
3
#endif

/***********************************************************************

multiquadric _interpolator.h
***********************************************************************/

#ifndef MULTIQUADRIC INTERPOLATOR H
#define MULTIQUADRIC INTERPOLATOR _H

#include "sparse_interpolator.h"
#include "simplematrix.h"
#include <math.h>

class multiquadric_interpolator: public sparse interpolator

{
private:
SimpleMatrix coef;
double r_squared;
void Clear()
{
sparse_interpolator::Clear();
}
public:
multiquadric_interpolator ()
{
r_squared = 1.0;
}
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~multiquadric_interpolator()

{
Clear();
}
char* InterpolationType()
{
return "Volume Spline";
}

double InterpolatePoint(point3D target, double r squared = 1.0)
{

if (pointCount < 3) return 0;

if (r_squared != this->r squared) dataHasChanged = true;
this-=>r squared =r _squared;

if (dataHasChanged) FindCoef();
dataHasChanged = false;

return ApplyCoef(target);
h

private:

double ApplyCoef(point3D target)
{
double retval = 0;
for (int i=0;i<pointCount;i++)
retval += coef.m[i][0] * kernelFunction((points[i]-
target).DistanceFromOrigin());
return retval;

}

double kernelFunction(double d)
{ return sqrt(d*d + r_squared);
}

void FindCoef ()

{

SimpleMatrix x(pointCount+1,pointCount);
for (int i=0;i<pointCount;i++)
for (int j=i;j<pointCount;j++)
x.m[1][j] = x.m[j][1] = kernelFunction((points[i]-
points[j]).DistanceFromOrigin());
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for (int i=0;i<pointCount;i++)
x.m[1][pointCount] = values][i];

coef = x.SolveGaussianAgumented();

¥
)5
#endif

/***********************************************************************

nearestneighbor_interpolator.h
***********************************************************************/

#ifndef NEARESTNEIGHBOR INTERPOLATOR H
#define NEARESTNEIGHBOR INTERPOLATOR H

#include "sparse_interpolator.h"

class nearestneighbor_interpolator: public sparse_interpolator

{

private:

public:
nearestneighbor_interpolator ()

1
}

~nearestneighbor _interpolator()

1
b

Clear();

char* InterpolationType()
{

}

return "Nearest Neighbor";

double InterpolatePoint(point3D target)
{

if (pointCount < 1) return 0;

int closest = 0;
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double smallestDistance = (target-points[0]).DistanceFromOrigin();
for (int i=1; 1 < pointCount; i++)

{
double dist = (target-points[i]).DistanceFromOrigin();
if (dist < smallestDistance)
{
closest =1;
smallestDistance = dist;
}
}
return values[closest];
}
}5
#endif

/***********************************************************************

polynomial interpolator.h
***********************************************************************/

#ifndef POLYNOMIAL INTERPOLATOR H
#define POLYNOMIAL INTERPOLATOR _H

#include "sparse interpolator.h"
#include "simplematrix.h"
#include <math.h>

class polynomial interpolator: public sparse_interpolator

{

private:
SimpleMatrix s;

public:
polynomial interpolator ()

{
j

~polynomial_interpolator()

{
}

Clear();

char* InterpolationType()
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{

return "Polynomial";

}

double InterpolatePoint(point3D target)
{

}

double InterpolatePoint(double target)

{

return InterpolatePoint(target.x);

if (pointCount < 4) return 0;

if (dataHasChanged) FindCoef();
dataHasChanged = false;

return ApplyCoef{target);

}

private:

double ApplyCoef (double target)
{
double sum = 0;
double coef=1;
for (int j=0; j<s.h;j++)
{
sum += coef * s.m[j][0];
coef *= target;
j

return sum;

}

void FindCoef()
{

SimpleMatrix m(pointCount+1,pointCount);
for (int i=0;i<pointCount;i++)
{
for (int j=0;j<pointCount;j++)
m.m[i][j] = pow(points[i].x, j);
m.m[i][0] = 1;
m.m[i][pointCount] = values][i];

}

s = m.SolveGaussianAgumented();

}
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¥
#endif

/***********************************************************************

thinplatespline interpolator.h
***********************************************************************/

#ifndef THINPLATESPLINE INTERPOLATOR H
#define THINPLATESPLINE INTERPOLATOR H

#include "sparse_interpolator.h"
#include "simplematrix.h"
#include <math.h>

class thinplatespline interpolator: public sparse interpolator
{
private:

SimpleMatrix coef;

void Clear()
{

}

sparse_interpolator::Clear();

public:
thinplatespline_interpolator ()

{
j

~thinplatespline_interpolator()

{
}

Clear();

char* InterpolationType()
{

}

return "Thin-Plate Spline";

double InterpolatePoint(point3D target, int use N closest points =-1)
{

if (pointCount < 3) return 0;
if (use N _closest points !=-1 && use N closest points < pointCount)
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}

}

sortPointsByDistance(target);
point3D *newpts = new point3D[use N closest points];
double *newvals = new double[use N _closest points];
for (int i=0;i<use N_closest points;i++)
{

newpts[i] = points][i];

newvals[i] = values][i];
J
thinplatespline interpolator interp;
interp.RegisterSparseData(newpts, newvals, use N closest points);
delete [] newpts;
delete [ newvals;
return interp.InterpolatePoint(target);

if (dataHasChanged) FindCoef();
dataHasChanged = false;
return ApplyCoef{target);

private:

double ApplyCoef(point3D target)

{

double retval = 0;

retval += coef.m[pointCount][0];

retval += coef.m[pointCount+1][0] * target.x;
retval += coef.m[pointCount+2][0] * target.y;
for (int i=0;i<pointCount;i++)

retval += coef.m[i][0] * kernelFunction((points[i]-

target).DistanceFromOrigin());
return retval;

}
double kernelFunction(double r)
{
if (r == 0) return 0;
return r*r*log(r);
}
void FindCoef ()
{

SimpleMatrix x(pointCount+3+1,pointCount+3);
for (int i=0;i<pointCount;i++)

for (int j=i;j<pointCount;j++)
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x.m[1][j] = x.m[j][1] = kernelFunction((points[i]-
points[j]).DistanceFromOrigin());

for (int i=0;i<pointCount;i++)

{
x.m[pointCount][i] = x.m[1][pointCount] = 1;
x.m[pointCount+1][i] = x.m[i][pointCount+1] = points[i].x;
x.m[pointCount+2][i] = x.m[1][pointCount+2] = points[i].y;
}

for (int i=0;i<pointCount;i++)
x.m[1][pointCount+3] = values[i];

coef = x.SolveGaussianAgumented();

}
3
#endif

/***********************************************************************

main.cpp
***********************************************************************/

#ifndef VOLUMESPLINE INTERPOLATOR H
#define VOLUMESPLINE INTERPOLATOR H

#include "sparse_interpolator.h"
#include "simplematrix.h"
#include <math.h>

class volumespline interpolator: public sparse_interpolator

{
private:

SimpleMatrix coef;

void Clear()
{

}

sparse_interpolator::Clear();

public:
volumespline interpolator ()
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{
}

~volumespline interpolator()

{
b

Clear();

char* InterpolationType()

{
h

return "Volume Spline";

double InterpolatePoint(point3D target)

{

}

private:

if (pointCount < 3) return 0;

if (dataHasChanged) FindCoef();
dataHasChanged = false;

return ApplyCoef{target);

double ApplyCoef(point3D target)

{

double retval = 0;
retval += coef.m[pointCount][0];
retval += coef.m[pointCount+1][0] * target.x;
retval += coef.m[pointCount+2][0] * target.y;
retval += coef.m[pointCount+3][0] * target.z;
for (int i=0;i<pointCount;i++)
retval += coef.m[i][0] * kernelFunction((points|[i]-

target).DistanceFromOrigin());

return retval;

}

double kernelFunction(double r)
{ return r*r¥r;

}

void FindCoef ()

{

SimpleMatrix x(pointCount+4+1,pointCount+4);
for (int i=0;i<pointCount;i++)
for (int j=i;j<pointCount;j++)
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x.m[1][j] = x.m[j][1] = kernelFunction((points[i]-
points[j]).DistanceFromOrigin());

for (int 1=0;1<pointCount;i++)

{
x.m[pointCount][i] = x.m[1][pointCount] = 1;
x.m[pointCount+1][i] = x.m[i][pointCount+1] = points[i].x;
x.m[pointCount+2][i] = x.m[1][pointCount+2] = points[i].y;
x.m[pointCount+3][i] = x.m[i][pointCount+3] = points[i].z;

}

for (int i=0;i1<pointCount;i++)
x.m[1][pointCount+4] = values][i];

coef = x.SolveGaussianAgumented();

¥
#endif

/***********************************************************************

spherical interpolator.cpp (A.K.A. MICROSPHERE PROJECTION)

***********************************************************************/

#ifndef SPHERICAL INTERPOLATOR _H
#define SPHERICAL INTERPOLATOR H

#define RESOLUTION 2D 1000 //MUST BE DIVISBLE BY 4
#define RESOLUTION 3D 2000

#define PI1 3.141592653

#define VERY SMALL WEIGHT 0.001

#include "sparse_interpolator.h"
#include <math.h>
#include "random.h"

class spherical_interpolator: public sparse interpolator

{

private:
double *applicationDensity;
point3D *sphereLocations;

void Clear()
{
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delete[] applicationDensity;
applicationDensity = 0;
delete[] sphereLocations;
sphereLocations = 0;
sparse_interpolator::Clear();

}
public:
spherical interpolator ()
{
applicationDensity = 0;
sphereLocations = 0;
}
~spherical interpolator()
{
Clear();
b
char* InterpolationType()
{
return "Spherical";
}

double InterpolatePoint(point3D target, double distancePower = 2, bool is2D = false)
{

if (pointCount < 1) return 0;

Create Weights(target, distancePower, i1s2D);
return ApplyWeights();

}

private:

void MakeApplicationDensity()

{
if (lapplicationDensity)
{
applicationDensity = new double [RESOLUTION 2D/2];
for (int i=0; i < RESOLUTION_2D/2; i++)
applicationDensity[i] = sin(i*PI*2/RESOLUTION_2D);
}
h

void Make3DSphereLocations()
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if (!sphereLocations)
{
MTRand r;
r.seed();
sphereLocations = new point3D [RESOLUTION 3D];
// set aside our random points on the sphere
for (int i=0; 1 < RESOLUTION 3D; i++)
{
do
{
sphereLocations[1].x = (2*r.rand())-1;
sphereLocations[i].y = (2*r.rand())-1;
sphereLocations[1].z = (2*r.rand())-1;
}+ while (sphereLocations[i].DistanceFromOrigin() == 0 ||
sphereLocations[1].DistanceFromOrigin() > 1);
sphereLocations[i] = ((vector3D)sphereLocations[i]).Normalize().p;
b

}
}

void CreateWeights2D(const point3D target, double distancePower)

{
MakeApplicationDensity();

// allocate memory and zero out our knowledge of the circle
static int *strongestIndex = new int [RESOLUTION 2D];
static double strongestValue[RESOLUTION 2D];
for (int i=0; i < RESOLUTION 2D; i++)
{

strongestIndex[i] =-1;

strongestValue[i] = 0;

}

CreateDistance Weights(target, distancePower, weights);

vector3D origin(1,0,0); // origin vector (points along x axis)
for (int i=0; 1 < pointCount; i++)
{
// this is the core multiplier. if very small, just skip.
if (weights[i] < VERY_ SMALL WEIGHT/pointCount) continue;

double angle = vector3D::AngleBetweenVectors(points[i]-target, origin);

if ((points[i]-target).y < 0) angle = 2*PI - angle; // ex: if angle = 90degrees &
y-value is negative, circular angle is 270degrees from the origin
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int baselndex = (int)(angle/(2*PI) * RESOLUTION 2D); // where is the
center of this distribution

// start at the leftmost position of the distribution.
int start = baselndex-RESOLUTION 2D/4;
for (int j=0; j < RESOLUTION 2D/2; j++)
{
int index = (start+j*RESOLUTION 2D)%RESOLUTION 2D; // ensure
index is positive and no greater than resolution-1
if (applicationDensity[j]*weights[i] > strongestValue[index])
{ // we have a new strongest value, replace previous one in this sector.
strongestIndex[index] = i;
strongestValue[index] = applicationDensity[j]*weights[i];
§
}
§

for (int i=0; 1 < pointCount; i++) weights[i] = 0;
for (int j=0; j < RESOLUTION_2D; j++) weights[strongestIndex[j]] +=
strongestValue[j];

sparse_interpolator::NormalizeWeights();

}

void CreateWeights3D(const point3D target, double distancePower)

{
Make3DSphereLocations();

// allocate memory and zero out our knowledge of the circle
static int *strongestIndex = new int [RESOLUTION 3D];
static double *strongestValue = new double [RESOLUTION 3D];
for (int i=0; 1 < RESOLUTION_3D; i++)
{
strongestIndex[i] = -1;
strongestValue[i] = 0;

}

CreateDistance Weights(target, distancePower, weights);
for (int i=0; 1 < pointCount; i++)

{

// this is the core multiplier. if super small, just skip.
if (weights[i] < VERY_SMALL WEIGHT/pointCount) continue;

vector3D pointvector = points[i]-target;

145



pointvector.Normalize();
for (int j=0; j < RESOLUTION 3D; j++)
{
double cosangle = vector3D::CosAngleBetweenVectors(pointvector,
sphereLocations[j], 1, 1);
if (cosangle > 0)
{ // if the data point is on the same side as the sphereLocation
if (cosangle*weights[i] > strongestValue[j])
{ // we have a new strongest value, replace previous one in this sector.
strongestIndex[j] = 1;
strongestValue[j] = cosangle*weights][i];
b
}
}
}

// final weight = % of circle covered-ish
for (int i=0; 1 < pointCount; i++)

{

double count = 0;
for (int j=0; j <RESOLUTION 3D; j++)

if (strongestIndex[j] == 1) count += strongestValue[j];
weights[i] = count;

}

sparse_interpolator::NormalizeWeights();

}

void CreateWeights(const point3D target, double distancePower, bool is2D)

{
MakeSimple WeightDistribution(weights);

if (pointCount < 1) return;

// save problems later on by checking to see if any known points are exactly the
same as the target
for (int i=0; 1 < pointCount; i++)
if (target == points[i])
{
for (int j=0; j < pointCount; j++)
weights[j] = 0;
weights[i] = 1.0;
return;

}

//this section conatins code which adresses the 'uniqueness' of the point
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//points which are more unique will have their relative visibility value increase
//points which are closer to other known points will see their relative visibility
values decrease

if (is2D)
CreateWeights2D(target, distancePower);
else
CreateWeights3D(target, distancePower); // 3D. YIKES!
}
s
#endif
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